
How do I evaluate $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} $?
Answer
533.7k+ views
Hint: First, separate the denominator in the integral and use trigonometric identities to simplify it. Then, use the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions. Next, use integral formula for cosecant and cotangent function. Then, use logarithm property and trigonometry identity to further simplify the result.and get the desired result.
Formula used:
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
Trigonometric identity: $\cos ecx = \dfrac{1}{{\sin x}}$, $\cot x = \dfrac{{\cos x}}{{\sin x}}$
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$
Complete step by step answer:
We have to find $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} $…(i)
First, separate the denominator in integral (i).
$\int {\left[ {\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}} \right]dx} $…(ii)
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ in integral (ii).
$\int {\left[ {\cos ecx + \cot x} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
$\int {\cos ecxdx} + \int {\cot xdx} $…(iv)
Now, use property $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$ in integral (iv).
$ \Rightarrow \log \left| {\cos ecx - \cot x} \right| + \log \left| {\sin x} \right| + C$
Now, use property $\log m + \log n = \log mn$ to simplify the above result.
$ \Rightarrow \log \left| {\left( {\cos ecx - \cot x} \right)\left( {\sin x} \right)} \right| + C$
Multiply $\sin x$ to $\left( {\cos ecx - \cot x} \right)$, we get
$ \Rightarrow \log \left| {\cos ecx \times \sin x - \cot x \times \sin x} \right| + C$
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \log \left| {\dfrac{1}{{\sin x}} \times \sin x - \dfrac{{\cos x}}{{\sin x}} \times \sin x} \right| + C$
Cancel the common factor.
$ \Rightarrow \log \left| {1 - \cos x} \right| + C$
Hence, $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} = \log \left| {1 - \cos x} \right| + C$.
Note:$\int {\cot xdx} = \log \left| {\sin x} \right| + C$
We have $\int {\cot xdx} = \int {\dfrac{{\cos x}}{{\sin x}}dx} $
Put $\sin x = t$ so that $\cos xdx = dt$.
Then, $\int {\cot xdx} = \int {\dfrac{{dt}}{t}} = \log \left| t \right| + C = \log \left| {\sin x} \right| + C$.
And, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$
We have $\int {\cos ecxdx} = \int {\dfrac{{\cos ecx\left( {\cos ecx + \cot x} \right)}}{{\left( {\cos ecx + \cot x} \right)}}dx} $
Put $\cos ecx + \cot x = t$ so that $ - \cos ecx\left( {\cos ecx + \cot x} \right)dx = dt$.
So, $\int {\cos ecxdx} = - \int {\dfrac{{dt}}{t}} = \log \left| t \right| = - \log \left| {\cos ecx + \cot x} \right| + C$
It can also be written as
$\int {\cos ecxdx} = - \log \left| {\dfrac{{\cos e{c^2}x - {{\cot }^2}x}}{{\cos ecx - \cot x}}} \right| + C$
Therefore, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$.
Formula used:
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
Trigonometric identity: $\cos ecx = \dfrac{1}{{\sin x}}$, $\cot x = \dfrac{{\cos x}}{{\sin x}}$
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$
Complete step by step answer:
We have to find $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} $…(i)
First, separate the denominator in integral (i).
$\int {\left[ {\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}} \right]dx} $…(ii)
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ in integral (ii).
$\int {\left[ {\cos ecx + \cot x} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
$\int {\cos ecxdx} + \int {\cot xdx} $…(iv)
Now, use property $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$ in integral (iv).
$ \Rightarrow \log \left| {\cos ecx - \cot x} \right| + \log \left| {\sin x} \right| + C$
Now, use property $\log m + \log n = \log mn$ to simplify the above result.
$ \Rightarrow \log \left| {\left( {\cos ecx - \cot x} \right)\left( {\sin x} \right)} \right| + C$
Multiply $\sin x$ to $\left( {\cos ecx - \cot x} \right)$, we get
$ \Rightarrow \log \left| {\cos ecx \times \sin x - \cot x \times \sin x} \right| + C$
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \log \left| {\dfrac{1}{{\sin x}} \times \sin x - \dfrac{{\cos x}}{{\sin x}} \times \sin x} \right| + C$
Cancel the common factor.
$ \Rightarrow \log \left| {1 - \cos x} \right| + C$
Hence, $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} = \log \left| {1 - \cos x} \right| + C$.
Note:$\int {\cot xdx} = \log \left| {\sin x} \right| + C$
We have $\int {\cot xdx} = \int {\dfrac{{\cos x}}{{\sin x}}dx} $
Put $\sin x = t$ so that $\cos xdx = dt$.
Then, $\int {\cot xdx} = \int {\dfrac{{dt}}{t}} = \log \left| t \right| + C = \log \left| {\sin x} \right| + C$.
And, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$
We have $\int {\cos ecxdx} = \int {\dfrac{{\cos ecx\left( {\cos ecx + \cot x} \right)}}{{\left( {\cos ecx + \cot x} \right)}}dx} $
Put $\cos ecx + \cot x = t$ so that $ - \cos ecx\left( {\cos ecx + \cot x} \right)dx = dt$.
So, $\int {\cos ecxdx} = - \int {\dfrac{{dt}}{t}} = \log \left| t \right| = - \log \left| {\cos ecx + \cot x} \right| + C$
It can also be written as
$\int {\cos ecxdx} = - \log \left| {\dfrac{{\cos e{c^2}x - {{\cot }^2}x}}{{\cos ecx - \cot x}}} \right| + C$
Therefore, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

