
How do I evaluate $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} $?
Answer
547.5k+ views
Hint: First, separate the denominator in the integral and use trigonometric identities to simplify it. Then, use the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions. Next, use integral formula for cosecant and cotangent function. Then, use logarithm property and trigonometry identity to further simplify the result.and get the desired result.
Formula used:
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
Trigonometric identity: $\cos ecx = \dfrac{1}{{\sin x}}$, $\cot x = \dfrac{{\cos x}}{{\sin x}}$
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$
Complete step by step answer:
We have to find $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} $…(i)
First, separate the denominator in integral (i).
$\int {\left[ {\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}} \right]dx} $…(ii)
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ in integral (ii).
$\int {\left[ {\cos ecx + \cot x} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
$\int {\cos ecxdx} + \int {\cot xdx} $…(iv)
Now, use property $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$ in integral (iv).
$ \Rightarrow \log \left| {\cos ecx - \cot x} \right| + \log \left| {\sin x} \right| + C$
Now, use property $\log m + \log n = \log mn$ to simplify the above result.
$ \Rightarrow \log \left| {\left( {\cos ecx - \cot x} \right)\left( {\sin x} \right)} \right| + C$
Multiply $\sin x$ to $\left( {\cos ecx - \cot x} \right)$, we get
$ \Rightarrow \log \left| {\cos ecx \times \sin x - \cot x \times \sin x} \right| + C$
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \log \left| {\dfrac{1}{{\sin x}} \times \sin x - \dfrac{{\cos x}}{{\sin x}} \times \sin x} \right| + C$
Cancel the common factor.
$ \Rightarrow \log \left| {1 - \cos x} \right| + C$
Hence, $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} = \log \left| {1 - \cos x} \right| + C$.
Note:$\int {\cot xdx} = \log \left| {\sin x} \right| + C$
We have $\int {\cot xdx} = \int {\dfrac{{\cos x}}{{\sin x}}dx} $
Put $\sin x = t$ so that $\cos xdx = dt$.
Then, $\int {\cot xdx} = \int {\dfrac{{dt}}{t}} = \log \left| t \right| + C = \log \left| {\sin x} \right| + C$.
And, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$
We have $\int {\cos ecxdx} = \int {\dfrac{{\cos ecx\left( {\cos ecx + \cot x} \right)}}{{\left( {\cos ecx + \cot x} \right)}}dx} $
Put $\cos ecx + \cot x = t$ so that $ - \cos ecx\left( {\cos ecx + \cot x} \right)dx = dt$.
So, $\int {\cos ecxdx} = - \int {\dfrac{{dt}}{t}} = \log \left| t \right| = - \log \left| {\cos ecx + \cot x} \right| + C$
It can also be written as
$\int {\cos ecxdx} = - \log \left| {\dfrac{{\cos e{c^2}x - {{\cot }^2}x}}{{\cos ecx - \cot x}}} \right| + C$
Therefore, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$.
Formula used:
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
Trigonometric identity: $\cos ecx = \dfrac{1}{{\sin x}}$, $\cot x = \dfrac{{\cos x}}{{\sin x}}$
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$
Complete step by step answer:
We have to find $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} $…(i)
First, separate the denominator in integral (i).
$\int {\left[ {\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}} \right]dx} $…(ii)
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ in integral (ii).
$\int {\left[ {\cos ecx + \cot x} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
$\int {\cos ecxdx} + \int {\cot xdx} $…(iv)
Now, use property $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$ and $\int {\cot xdx} = \log \left| {\sin x} \right| + C$ in integral (iv).
$ \Rightarrow \log \left| {\cos ecx - \cot x} \right| + \log \left| {\sin x} \right| + C$
Now, use property $\log m + \log n = \log mn$ to simplify the above result.
$ \Rightarrow \log \left| {\left( {\cos ecx - \cot x} \right)\left( {\sin x} \right)} \right| + C$
Multiply $\sin x$ to $\left( {\cos ecx - \cot x} \right)$, we get
$ \Rightarrow \log \left| {\cos ecx \times \sin x - \cot x \times \sin x} \right| + C$
Now, use trigonometry identities $\cos ecx = \dfrac{1}{{\sin x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$.
$ \Rightarrow \log \left| {\dfrac{1}{{\sin x}} \times \sin x - \dfrac{{\cos x}}{{\sin x}} \times \sin x} \right| + C$
Cancel the common factor.
$ \Rightarrow \log \left| {1 - \cos x} \right| + C$
Hence, $\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} = \log \left| {1 - \cos x} \right| + C$.
Note:$\int {\cot xdx} = \log \left| {\sin x} \right| + C$
We have $\int {\cot xdx} = \int {\dfrac{{\cos x}}{{\sin x}}dx} $
Put $\sin x = t$ so that $\cos xdx = dt$.
Then, $\int {\cot xdx} = \int {\dfrac{{dt}}{t}} = \log \left| t \right| + C = \log \left| {\sin x} \right| + C$.
And, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$
We have $\int {\cos ecxdx} = \int {\dfrac{{\cos ecx\left( {\cos ecx + \cot x} \right)}}{{\left( {\cos ecx + \cot x} \right)}}dx} $
Put $\cos ecx + \cot x = t$ so that $ - \cos ecx\left( {\cos ecx + \cot x} \right)dx = dt$.
So, $\int {\cos ecxdx} = - \int {\dfrac{{dt}}{t}} = \log \left| t \right| = - \log \left| {\cos ecx + \cot x} \right| + C$
It can also be written as
$\int {\cos ecxdx} = - \log \left| {\dfrac{{\cos e{c^2}x - {{\cot }^2}x}}{{\cos ecx - \cot x}}} \right| + C$
Therefore, $\int {\cos ecxdx} = \log \left| {\cos ecx - \cot x} \right| + C$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

