Answer
Verified
398.4k+ views
Hint: In this question, we have a trigonometric inverse function. Trigonometric inverse function is also called arc function. To solve the trigonometric inverse function we assume the angle \[\theta \] which is equal to that trigonometric inverse function. Then we find the value of \[\theta \].
Complete step by step answer:
In this question, we used the word trigonometric inverse function. We have the following inverse trigonometric functions,
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as\[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as\[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given as below.
\[\arccos \left( 1 \right)\]
We can write the above trigonometric function as below.
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( 1 \right)\]
We know that\[\cos 0 = 1\], and then put the value of \[1\] in above.
Then,
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( {\cos 0} \right)\]
We know that\[{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta \].
Then, \[{\cos ^{ - 1}}\left( {\cos 0} \right) = 0\]. Put these values in above.
Hence,
\[\therefore \arccos \left( 1 \right) = 0^\circ \]
Therefore, the value of \[\arccos \left( 1 \right)\]is \[0\] degree.
Note:
As we know that the trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec and cot. The trigonometric inverse function is also called cyclomatic function, anti-trigonometric function and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right angle triangles.
Complete step by step answer:
In this question, we used the word trigonometric inverse function. We have the following inverse trigonometric functions,
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as\[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as\[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given as below.
\[\arccos \left( 1 \right)\]
We can write the above trigonometric function as below.
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( 1 \right)\]
We know that\[\cos 0 = 1\], and then put the value of \[1\] in above.
Then,
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( {\cos 0} \right)\]
We know that\[{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta \].
Then, \[{\cos ^{ - 1}}\left( {\cos 0} \right) = 0\]. Put these values in above.
Hence,
\[\therefore \arccos \left( 1 \right) = 0^\circ \]
Therefore, the value of \[\arccos \left( 1 \right)\]is \[0\] degree.
Note:
As we know that the trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec and cot. The trigonometric inverse function is also called cyclomatic function, anti-trigonometric function and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right angle triangles.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE