How do you evaluate \[\arccos \left( 1 \right)\] without a calculator?
Answer
Verified
438.6k+ views
Hint: In this question, we have a trigonometric inverse function. Trigonometric inverse function is also called arc function. To solve the trigonometric inverse function we assume the angle \[\theta \] which is equal to that trigonometric inverse function. Then we find the value of \[\theta \].
Complete step by step answer:
In this question, we used the word trigonometric inverse function. We have the following inverse trigonometric functions,
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as\[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as\[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given as below.
\[\arccos \left( 1 \right)\]
We can write the above trigonometric function as below.
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( 1 \right)\]
We know that\[\cos 0 = 1\], and then put the value of \[1\] in above.
Then,
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( {\cos 0} \right)\]
We know that\[{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta \].
Then, \[{\cos ^{ - 1}}\left( {\cos 0} \right) = 0\]. Put these values in above.
Hence,
\[\therefore \arccos \left( 1 \right) = 0^\circ \]
Therefore, the value of \[\arccos \left( 1 \right)\]is \[0\] degree.
Note:
As we know that the trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec and cot. The trigonometric inverse function is also called cyclomatic function, anti-trigonometric function and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right angle triangles.
Complete step by step answer:
In this question, we used the word trigonometric inverse function. We have the following inverse trigonometric functions,
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as\[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as\[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given as below.
\[\arccos \left( 1 \right)\]
We can write the above trigonometric function as below.
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( 1 \right)\]
We know that\[\cos 0 = 1\], and then put the value of \[1\] in above.
Then,
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( {\cos 0} \right)\]
We know that\[{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta \].
Then, \[{\cos ^{ - 1}}\left( {\cos 0} \right) = 0\]. Put these values in above.
Hence,
\[\therefore \arccos \left( 1 \right) = 0^\circ \]
Therefore, the value of \[\arccos \left( 1 \right)\]is \[0\] degree.
Note:
As we know that the trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec and cot. The trigonometric inverse function is also called cyclomatic function, anti-trigonometric function and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right angle triangles.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE