
How do you evaluate \[\arccos \left( 1 \right)\] without a calculator?
Answer
466.8k+ views
Hint: In this question, we have a trigonometric inverse function. Trigonometric inverse function is also called arc function. To solve the trigonometric inverse function we assume the angle \[\theta \] which is equal to that trigonometric inverse function. Then we find the value of \[\theta \].
Complete step by step answer:
In this question, we used the word trigonometric inverse function. We have the following inverse trigonometric functions,
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as\[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as\[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given as below.
\[\arccos \left( 1 \right)\]
We can write the above trigonometric function as below.
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( 1 \right)\]
We know that\[\cos 0 = 1\], and then put the value of \[1\] in above.
Then,
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( {\cos 0} \right)\]
We know that\[{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta \].
Then, \[{\cos ^{ - 1}}\left( {\cos 0} \right) = 0\]. Put these values in above.
Hence,
\[\therefore \arccos \left( 1 \right) = 0^\circ \]
Therefore, the value of \[\arccos \left( 1 \right)\]is \[0\] degree.
Note:
As we know that the trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec and cot. The trigonometric inverse function is also called cyclomatic function, anti-trigonometric function and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right angle triangles.
Complete step by step answer:
In this question, we used the word trigonometric inverse function. We have the following inverse trigonometric functions,
Arcsine function: it is the inverse function of sine. It is denoted as \[{\sin ^{ - 1}}\].
Arccosine function: it is the inverse function of cosine. It is denoted as \[{\cos ^{ - 1}}\].
Arctangent function: it is the inverse function of tangent. It is denoted as\[{\tan ^{ - 1}}\].
Arccotangent function: it is the inverse function of cotangent. It is denoted as\[{\cot ^{ - 1}}\].
Arcsecant function: it is the inverse function of secant. It is denoted as \[{\sec ^{ - 1}}\].
Arccosecant function: it is the inverse function of cosecant. It is denoted as \[\cos e{c^{ - 1}}\].
Now, we come to the question. The data is given as below.
\[\arccos \left( 1 \right)\]
We can write the above trigonometric function as below.
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( 1 \right)\]
We know that\[\cos 0 = 1\], and then put the value of \[1\] in above.
Then,
\[ \Rightarrow \arccos \left( 1 \right) = {\cos ^{ - 1}}\left( {\cos 0} \right)\]
We know that\[{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta \].
Then, \[{\cos ^{ - 1}}\left( {\cos 0} \right) = 0\]. Put these values in above.
Hence,
\[\therefore \arccos \left( 1 \right) = 0^\circ \]
Therefore, the value of \[\arccos \left( 1 \right)\]is \[0\] degree.
Note:
As we know that the trigonometric inverse function is defined as the inverse function of trigonometric identities like sin, cos, tan, cosec, sec and cot. The trigonometric inverse function is also called cyclomatic function, anti-trigonometric function and arc function. The trigonometric inverse function is used to find the angle of any trigonometric ratio. The trigonometric inverse function is applicable for right angle triangles.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
