
Evaluate \[8.5 \times 9.5\] using a suitable standard identity.
Answer
567.9k+ views
Hint: Here, we need to find the value of \[8.5 \times 9.5\] using a suitable standard identity. We will rewrite the two numbers as a sum or difference of two numbers in such a way that the product can be found using one of the standard algebraic identities. Then, we will simplify the expression to find the required value.
Formula Used: The product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Complete step-by-step answer:
We can evaluate the given product using any of the two identities \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\] or \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
We will use the second identity to solve this problem.
First, we will rewrite the given numbers as the sum or difference of two numbers such that the identity is applicable.
We know that \[8.5\] is the difference of 9 and \[0.5\], and \[9.5\] is the sum of 9 and \[0.5\].
Therefore, substituting \[8.5 = 9 - 0.5\] and \[9.5 = 9 + 0.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {9 - 0.5} \right)\left( {9 + 0.5} \right)\]
Now, we know that the product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Substituting \[a = 9\] and \[b = 0.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {9 - 0.5} \right)\left( {9 + 0.5} \right) = {9^2} - {\left( {0.5} \right)^2}\]
Simplifying the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 81 - 0.25\]
Subtracting \[0.25\] from 81, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
Therefore, the value of the product \[8.5 \times 9.5\] is \[80.75\].
Note: We can also solve the problem using the identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[8.5 = 8 + 0.5\] and \[9.5 = 8 + 1.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {8 + 0.5} \right)\left( {8 + 1.5} \right)\]
Now, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[x = 8\],\[a = 0.5\] and \[b = 1.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {8 + 0.5} \right)\left( {8 + 1.5} \right) = {8^2} + \left( {0.5 + 1.5} \right)8 + \left( {0.5} \right)\left( {1.5} \right)\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow 8.5 \times 9.5 = 64 + 2 \times 8 + 0.75\\ \Rightarrow 8.5 \times 9.5 = 64 + 16 + 0.75\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
\[\therefore\] The value of the product \[8.5 \times 9.5\] is \[80.75\].
Formula Used: The product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Complete step-by-step answer:
We can evaluate the given product using any of the two identities \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\] or \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
We will use the second identity to solve this problem.
First, we will rewrite the given numbers as the sum or difference of two numbers such that the identity is applicable.
We know that \[8.5\] is the difference of 9 and \[0.5\], and \[9.5\] is the sum of 9 and \[0.5\].
Therefore, substituting \[8.5 = 9 - 0.5\] and \[9.5 = 9 + 0.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {9 - 0.5} \right)\left( {9 + 0.5} \right)\]
Now, we know that the product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Substituting \[a = 9\] and \[b = 0.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {9 - 0.5} \right)\left( {9 + 0.5} \right) = {9^2} - {\left( {0.5} \right)^2}\]
Simplifying the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 81 - 0.25\]
Subtracting \[0.25\] from 81, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
Therefore, the value of the product \[8.5 \times 9.5\] is \[80.75\].
Note: We can also solve the problem using the identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[8.5 = 8 + 0.5\] and \[9.5 = 8 + 1.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {8 + 0.5} \right)\left( {8 + 1.5} \right)\]
Now, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[x = 8\],\[a = 0.5\] and \[b = 1.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {8 + 0.5} \right)\left( {8 + 1.5} \right) = {8^2} + \left( {0.5 + 1.5} \right)8 + \left( {0.5} \right)\left( {1.5} \right)\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow 8.5 \times 9.5 = 64 + 2 \times 8 + 0.75\\ \Rightarrow 8.5 \times 9.5 = 64 + 16 + 0.75\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
\[\therefore\] The value of the product \[8.5 \times 9.5\] is \[80.75\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

