Answer
Verified
455.4k+ views
Hint: Here, we need to find the value of \[8.5 \times 9.5\] using a suitable standard identity. We will rewrite the two numbers as a sum or difference of two numbers in such a way that the product can be found using one of the standard algebraic identities. Then, we will simplify the expression to find the required value.
Formula Used: The product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Complete step-by-step answer:
We can evaluate the given product using any of the two identities \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\] or \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
We will use the second identity to solve this problem.
First, we will rewrite the given numbers as the sum or difference of two numbers such that the identity is applicable.
We know that \[8.5\] is the difference of 9 and \[0.5\], and \[9.5\] is the sum of 9 and \[0.5\].
Therefore, substituting \[8.5 = 9 - 0.5\] and \[9.5 = 9 + 0.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {9 - 0.5} \right)\left( {9 + 0.5} \right)\]
Now, we know that the product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Substituting \[a = 9\] and \[b = 0.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {9 - 0.5} \right)\left( {9 + 0.5} \right) = {9^2} - {\left( {0.5} \right)^2}\]
Simplifying the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 81 - 0.25\]
Subtracting \[0.25\] from 81, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
Therefore, the value of the product \[8.5 \times 9.5\] is \[80.75\].
Note: We can also solve the problem using the identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[8.5 = 8 + 0.5\] and \[9.5 = 8 + 1.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {8 + 0.5} \right)\left( {8 + 1.5} \right)\]
Now, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[x = 8\],\[a = 0.5\] and \[b = 1.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {8 + 0.5} \right)\left( {8 + 1.5} \right) = {8^2} + \left( {0.5 + 1.5} \right)8 + \left( {0.5} \right)\left( {1.5} \right)\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow 8.5 \times 9.5 = 64 + 2 \times 8 + 0.75\\ \Rightarrow 8.5 \times 9.5 = 64 + 16 + 0.75\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
\[\therefore\] The value of the product \[8.5 \times 9.5\] is \[80.75\].
Formula Used: The product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Complete step-by-step answer:
We can evaluate the given product using any of the two identities \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\] or \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
We will use the second identity to solve this problem.
First, we will rewrite the given numbers as the sum or difference of two numbers such that the identity is applicable.
We know that \[8.5\] is the difference of 9 and \[0.5\], and \[9.5\] is the sum of 9 and \[0.5\].
Therefore, substituting \[8.5 = 9 - 0.5\] and \[9.5 = 9 + 0.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {9 - 0.5} \right)\left( {9 + 0.5} \right)\]
Now, we know that the product of the sum of two number and the difference of two numbers can be calculated using the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
Substituting \[a = 9\] and \[b = 0.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {9 - 0.5} \right)\left( {9 + 0.5} \right) = {9^2} - {\left( {0.5} \right)^2}\]
Simplifying the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 81 - 0.25\]
Subtracting \[0.25\] from 81, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
Therefore, the value of the product \[8.5 \times 9.5\] is \[80.75\].
Note: We can also solve the problem using the identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[8.5 = 8 + 0.5\] and \[9.5 = 8 + 1.5\], we can rewrite the product as
\[ \Rightarrow 8.5 \times 9.5 = \left( {8 + 0.5} \right)\left( {8 + 1.5} \right)\]
Now, we will use the algebraic identity \[\left( {x + a} \right)\left( {x + b} \right) = {x^2} + \left( {a + b} \right)x + ab\].
Substituting \[x = 8\],\[a = 0.5\] and \[b = 1.5\] in the algebraic identity, we get
\[ \Rightarrow \left( {8 + 0.5} \right)\left( {8 + 1.5} \right) = {8^2} + \left( {0.5 + 1.5} \right)8 + \left( {0.5} \right)\left( {1.5} \right)\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow 8.5 \times 9.5 = 64 + 2 \times 8 + 0.75\\ \Rightarrow 8.5 \times 9.5 = 64 + 16 + 0.75\end{array}\]
Adding the terms of the expression, we get
\[ \Rightarrow 8.5 \times 9.5 = 80.75\]
\[\therefore\] The value of the product \[8.5 \times 9.5\] is \[80.75\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE