Answer
Verified
373.2k+ views
Hint: In order to take out the value of $ \theta $ , firstly multiply cosine inverse both the sides on the first equation, which would lead to opening of the parenthesis and we would get one new equation. Similarly multiplying sine inverse on both the sides of the second equation to open the parenthesis. Then subtract one equation from the other which would lead to cancellation of $ \theta $ , and our value will be obtained.
Complete step-by-step answer:
We are given with two equations, marking them as (1) and (2):
$ a = \cos \left( {\theta - \alpha } \right) $ ……….(1)
$ b = \sin \left( {\theta - \beta } \right) $ ……….(2)
Now, in (1) multiplying both the sides with cosine inverse $ \left( {{{\cos }^{ - 1}}} \right) $ , as there is cosine value given:
$
a = \cos \left( {\theta - \alpha } \right) \\
= > {\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \;
$
Since, we know that $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ , applying this in above equation in order to cancel out the cosine terms and we get:
$
{\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \\
= > {\cos ^{ - 1}}\left( a \right) = \theta - \alpha \;
$
Marking the equation $ {\cos ^{ - 1}}\left( a \right) = \theta - \alpha $ as (3).
Similarly, multiplying both sides with sine inverse $ \left( {{{\sin }^{ - 1}}} \right) $ in (2) as sine value is given in the equation, and using the same concept of $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ for sine, in order to cancel out sine terms, we get:
$
b = \sin \left( {\theta - \beta } \right) \\
= > {\sin ^{ - 1}}\left( b \right) = {\sin ^{ - 1}}\left( {\sin \left( {\theta - \beta } \right)} \right) \\
= > {\sin ^{ - 1}}\left( b \right) = \theta - \beta \;
$
Marking the equation $ {\sin ^{ - 1}}\left( b \right) = \theta - \beta $ as (4):
Now, subtracting (4) from (3) and we get:
$
\left( 4 \right) - \left( 3 \right) \\
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \;
$
Opening up the parenthesis for the above equation:
$
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \\
= > {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \theta - \alpha - \theta + \beta \;
$
We can see that $ \theta $ can be cancelled out, so on further solving, we get that:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = - \alpha + \beta $
Arranging the above equation:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \beta - \alpha $
And, $ \theta $ is cancelled out between the two equations $ a = \cos \left( {\theta - \alpha } \right) $ and $ b = \sin \left( {\theta - \beta } \right) $ .
Note: Do not apply any formula, which is not known to open the brackets otherwise would lead to confusion in solving the above equations.
Do not make mistakes by directly subtracting the terms in order to cancel out inner terms. It’s an inappropriate step.
Complete step-by-step answer:
We are given with two equations, marking them as (1) and (2):
$ a = \cos \left( {\theta - \alpha } \right) $ ……….(1)
$ b = \sin \left( {\theta - \beta } \right) $ ……….(2)
Now, in (1) multiplying both the sides with cosine inverse $ \left( {{{\cos }^{ - 1}}} \right) $ , as there is cosine value given:
$
a = \cos \left( {\theta - \alpha } \right) \\
= > {\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \;
$
Since, we know that $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ , applying this in above equation in order to cancel out the cosine terms and we get:
$
{\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \\
= > {\cos ^{ - 1}}\left( a \right) = \theta - \alpha \;
$
Marking the equation $ {\cos ^{ - 1}}\left( a \right) = \theta - \alpha $ as (3).
Similarly, multiplying both sides with sine inverse $ \left( {{{\sin }^{ - 1}}} \right) $ in (2) as sine value is given in the equation, and using the same concept of $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ for sine, in order to cancel out sine terms, we get:
$
b = \sin \left( {\theta - \beta } \right) \\
= > {\sin ^{ - 1}}\left( b \right) = {\sin ^{ - 1}}\left( {\sin \left( {\theta - \beta } \right)} \right) \\
= > {\sin ^{ - 1}}\left( b \right) = \theta - \beta \;
$
Marking the equation $ {\sin ^{ - 1}}\left( b \right) = \theta - \beta $ as (4):
Now, subtracting (4) from (3) and we get:
$
\left( 4 \right) - \left( 3 \right) \\
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \;
$
Opening up the parenthesis for the above equation:
$
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \\
= > {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \theta - \alpha - \theta + \beta \;
$
We can see that $ \theta $ can be cancelled out, so on further solving, we get that:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = - \alpha + \beta $
Arranging the above equation:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \beta - \alpha $
And, $ \theta $ is cancelled out between the two equations $ a = \cos \left( {\theta - \alpha } \right) $ and $ b = \sin \left( {\theta - \beta } \right) $ .
Note: Do not apply any formula, which is not known to open the brackets otherwise would lead to confusion in solving the above equations.
Do not make mistakes by directly subtracting the terms in order to cancel out inner terms. It’s an inappropriate step.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Give a reason for the establishment of the Mohammedan class 10 social science CBSE
What are the two main features of Himadri class 11 social science CBSE
The continent which does not touch the Mediterranean class 7 social science CBSE
India has form of democracy a Direct b Indirect c Presidential class 12 sst CBSE
which foreign country is closest to andaman islands class 10 social science CBSE
One cusec is equal to how many liters class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which foreign country is closest to Andaman Islands class 11 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE