Eliminate l,m between the equations \[{\text{lx + my = a, mx - ly = b, }}{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}{\text{ = 1}}\] .
Last updated date: 25th Mar 2023
•
Total views: 309.9k
•
Views today: 5.86k
Answer
309.9k+ views
Hint:- Square both the equations given in terms of x & y and add.
Let the given equation be
$
{\text{lx + my = a }} \cdots \left( 1 \right) \\
{\text{mx - ly = b }} \cdots \left( 2 \right) \\
{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}{\text{ = 1 }} \cdots \left( 3 \right) \\
$
For eliminating l and m, we need to perform squaring on both sides of equation (1) and (2).
$
{\left( {{\text{lx + my}}} \right)^2} = {\text{ }}{{\text{a}}^2}{\text{ }} \cdots \left( 4 \right) \\
{\left( {{\text{mx - ly}}} \right)^2}{\text{ = }}{{\text{b}}^2}{\text{ }} \cdots \left( 5 \right) \\
$
On adding equations (4) and (5) and simplifying the equation, we get
$
{\left( {{\text{lx + my}}} \right)^2}{\text{ + }}{\left( {{\text{mx - ly}}} \right)^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ }} \cdots \left( 6 \right) \\
{{\text{l}}^2}{{\text{x}}^2}{\text{ + }}{{\text{m}}^2}{{\text{y}}^2}{\text{ + 2(lx)(my) + }}{{\text{m}}^2}{{\text{x}}^2}{\text{ + }}{{\text{l}}^2}{{\text{y}}^2}{\text{ - 2(mx)(ly) = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2} \\
$
Cancelling (2lmxy) terms and taking ${{\text{l}}^2}{\text{ + }}{{\text{m}}^2}$ common , we get
$\left( {{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}} \right){{\text{x}}^2}{\text{ + }}\left( {{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}} \right){{\text{y}}^2} = {\text{ }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ }} \cdots \left( 7 \right)$
Putting the value of ${{\text{l}}^2}{\text{ + }}{{\text{m}}^2}$ from equation (3), we get
${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}$
It is the required answer.
Note:- There are two well known methods to solve the linear algebraic equations. They are (i) by substitution and (ii) by elimination by multiplication. These methods can easily be applied when the equations have two unknowns. But here we have four unknowns. Assuming a and b as constant.So, these types of problems are solved differently.
Let the given equation be
$
{\text{lx + my = a }} \cdots \left( 1 \right) \\
{\text{mx - ly = b }} \cdots \left( 2 \right) \\
{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}{\text{ = 1 }} \cdots \left( 3 \right) \\
$
For eliminating l and m, we need to perform squaring on both sides of equation (1) and (2).
$
{\left( {{\text{lx + my}}} \right)^2} = {\text{ }}{{\text{a}}^2}{\text{ }} \cdots \left( 4 \right) \\
{\left( {{\text{mx - ly}}} \right)^2}{\text{ = }}{{\text{b}}^2}{\text{ }} \cdots \left( 5 \right) \\
$
On adding equations (4) and (5) and simplifying the equation, we get
$
{\left( {{\text{lx + my}}} \right)^2}{\text{ + }}{\left( {{\text{mx - ly}}} \right)^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ }} \cdots \left( 6 \right) \\
{{\text{l}}^2}{{\text{x}}^2}{\text{ + }}{{\text{m}}^2}{{\text{y}}^2}{\text{ + 2(lx)(my) + }}{{\text{m}}^2}{{\text{x}}^2}{\text{ + }}{{\text{l}}^2}{{\text{y}}^2}{\text{ - 2(mx)(ly) = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2} \\
$
Cancelling (2lmxy) terms and taking ${{\text{l}}^2}{\text{ + }}{{\text{m}}^2}$ common , we get
$\left( {{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}} \right){{\text{x}}^2}{\text{ + }}\left( {{{\text{l}}^2}{\text{ + }}{{\text{m}}^2}} \right){{\text{y}}^2} = {\text{ }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ }} \cdots \left( 7 \right)$
Putting the value of ${{\text{l}}^2}{\text{ + }}{{\text{m}}^2}$ from equation (3), we get
${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}$
It is the required answer.
Note:- There are two well known methods to solve the linear algebraic equations. They are (i) by substitution and (ii) by elimination by multiplication. These methods can easily be applied when the equations have two unknowns. But here we have four unknowns. Assuming a and b as constant.So, these types of problems are solved differently.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
