Answer
Verified
398.4k+ views
Hint: We need to draw the graph ‘x’ versus ‘y’. Normally we give the random values for ‘x’ and we find the value of ‘y’. If we give all the real number values of ‘x’ we will get a decimal point of ‘y’ which is difficult to point out the coordinate in the graph. So we give all the real values for ‘y’ and we find the ‘x’ values. Thus we will have coordinate points (x, y). Hence, we can plot the graph by using the values. We can also draw the graph using the intercept method. But here we have a function which is passing through origin. So we use tables to draw the graph.
Complete step-by-step solution:
Given \[x = 5y\].
Let's give the values for ‘y’ and we find the value of ‘x’.
Put \[y = 1\]in \[x = 5y\] we have,
\[x = 5 \times 1 = 5\]
Thus we have coordinate points \[(5,1)\].
Put \[y = - 1\]in \[x = 5y\] we have,
\[x = 5 \times ( - 1) = - 5\]
Thus we have coordinate point \[( - 5, - 1)\].
Put \[y = 2\]in \[x = 5y\] we have,
\[x = 5 \times 2 = 10\]
Thus we have coordinate points \[(10,2)\].
Put \[y = - 2\]in \[x = 5y\] we have,
\[x = 5 \times ( - 2) = - 10\]
Thus we have coordinate point \[( - 10, - 2)\].
Put \[y = 3\]in \[x = 5y\] we have,
\[x = 5 \times 3 = 15\]
Thus we have coordinate points \[(15,3)\].
Put \[y = - 3\]in \[x = 5y\] we have,
\[x = 5 \times \left( { - 3} \right) = - 15\]
Thus we have coordinate point \[( - 15, - 3)\].
Put \[y = 4\]in \[x = 5y\] we have,
\[x = 5 \times 4 = 20\]
Thus we have coordinate points \[(20,4)\].
Put \[y = - 4\]in \[x = 5y\] we have,
\[x = 5 \times \left( { - 4} \right) = - 20\]
Thus we have coordinate point \[( - 20, - 4)\]Thus we have,
Let’s draw the graph for these coordinates,
Here we take x-axis = 1 unit =5 units
y-axis = 1 unit =1 unit.
Note: We can see that the given curve is parabola. A graph shows the relation between two variable quantities, it contains two axes perpendicular to each other namely the x-axis and the y-axis. Each variable is measured along one of the axes. In the question, we are given one linear equation containing two variables namely x and y, x is measured along the x-axis and y is measured along the y-axis while tracing the given equations.
Complete step-by-step solution:
Given \[x = 5y\].
Let's give the values for ‘y’ and we find the value of ‘x’.
Put \[y = 1\]in \[x = 5y\] we have,
\[x = 5 \times 1 = 5\]
Thus we have coordinate points \[(5,1)\].
Put \[y = - 1\]in \[x = 5y\] we have,
\[x = 5 \times ( - 1) = - 5\]
Thus we have coordinate point \[( - 5, - 1)\].
Put \[y = 2\]in \[x = 5y\] we have,
\[x = 5 \times 2 = 10\]
Thus we have coordinate points \[(10,2)\].
Put \[y = - 2\]in \[x = 5y\] we have,
\[x = 5 \times ( - 2) = - 10\]
Thus we have coordinate point \[( - 10, - 2)\].
Put \[y = 3\]in \[x = 5y\] we have,
\[x = 5 \times 3 = 15\]
Thus we have coordinate points \[(15,3)\].
Put \[y = - 3\]in \[x = 5y\] we have,
\[x = 5 \times \left( { - 3} \right) = - 15\]
Thus we have coordinate point \[( - 15, - 3)\].
Put \[y = 4\]in \[x = 5y\] we have,
\[x = 5 \times 4 = 20\]
Thus we have coordinate points \[(20,4)\].
Put \[y = - 4\]in \[x = 5y\] we have,
\[x = 5 \times \left( { - 4} \right) = - 20\]
Thus we have coordinate point \[( - 20, - 4)\]Thus we have,
\[x\] | \[5\] | \[ - 5\] | \[10\] | \[ - 10\] | \[15\] | \[ - 15\] | \[20\] | \[ - 20\] |
\[y\] | \[1\] | \[ - 1\] | \[2\] | \[ - 2\] | \[3\] | \[ - 3\] | \[4\] | \[ - 4\] |
Let’s draw the graph for these coordinates,
Here we take x-axis = 1 unit =5 units
y-axis = 1 unit =1 unit.
Note: We can see that the given curve is parabola. A graph shows the relation between two variable quantities, it contains two axes perpendicular to each other namely the x-axis and the y-axis. Each variable is measured along one of the axes. In the question, we are given one linear equation containing two variables namely x and y, x is measured along the x-axis and y is measured along the y-axis while tracing the given equations.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE