
Draw a circle of diameter 9 cm. Mark a point at a distance of 7.5 cm from the center of the circle. Draw tangents to the given circle from this exterior point. Measure the length of each tangent.
Answer
579k+ views
Hint: To solve this first we have to write the steps of construction and then draw the figures with respective dimensions. Draw a circle of radius 4.5 and now draw a line from center and from the end point of line draw tangents and now measure the distance.
Given: Diameter = 9cm
Radius = \[\dfrac{9}{2}=4.5cm\]
Complete step-by-step answer:
Mark a point O. Draw a circle of radius 4.5cm.
From the point mark a point P such OP = 7.5cm
Draw tangents PT and PR from the point P such that it touches the circumference of the circle.
From the diagram we can see that a right angled triangle is formed by OTP.
Now by Pythagoras theorem we can find the distance from point P to R which is a tangent to a circle.
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\] . . . . . . . . . . . . . . . . . (a)
\[{{4.5}^{2}}+{{t}^{2}}={{7.5}^{2}}\]
\[{{t}^{2}}={{7.5}^{2}}-{{4.5}^{2}}\]
\[{{t}^{2}}=56.25-20.25\]
\[{{t}^{2}}=36\]
\[t=6\]
t is the distance from P to R.
Length of the tangents PT = 6cm and PR = 6 cm.
Note: The right angle is at vertex T. There are two tangents drawn from a point and they have the same distance if they are projected on a circle. The tangents are the lines which just touch the circle. All dimensions are in cm.
Given: Diameter = 9cm
Radius = \[\dfrac{9}{2}=4.5cm\]
Complete step-by-step answer:
Mark a point O. Draw a circle of radius 4.5cm.
From the point mark a point P such OP = 7.5cm
Draw tangents PT and PR from the point P such that it touches the circumference of the circle.
From the diagram we can see that a right angled triangle is formed by OTP.
Now by Pythagoras theorem we can find the distance from point P to R which is a tangent to a circle.
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}\] . . . . . . . . . . . . . . . . . (a)
\[{{4.5}^{2}}+{{t}^{2}}={{7.5}^{2}}\]
\[{{t}^{2}}={{7.5}^{2}}-{{4.5}^{2}}\]
\[{{t}^{2}}=56.25-20.25\]
\[{{t}^{2}}=36\]
\[t=6\]
t is the distance from P to R.
Length of the tangents PT = 6cm and PR = 6 cm.
Note: The right angle is at vertex T. There are two tangents drawn from a point and they have the same distance if they are projected on a circle. The tangents are the lines which just touch the circle. All dimensions are in cm.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

