
How does the degree of dissociation affect \[K_a\]?
Answer
442.8k+ views
Hint: The \[K_a\] value is started by looking at the equilibrium constant for the dissociation of the acid. The upper the \[K_a\], the more the acid dissociates. Thus, resilient acids must dissociate in water. In contrast, a weak acid is less expected to ionize and release a hydrogen ion, consequently resulting in a less acidic.
Complete step by step answer:
The greater the value of \[K_a\], the greater the range of dissociation.
For several acid,\[\;HA\] , we can inscribe the dissociation process as
\[HA\left( {aq} \right){\text{ }} \leftrightarrow {H^ + }\left( {aq} \right){\text{ }} + {\text{ }}{A^ - }\left( {aq} \right)\]
The equilibrium constant for this process is definite as the proportion of equilibrium products and reactants:
${K_a} = ([{H^ + }][{A^ - }])/([HA])$$ K_a$ is huge, then the concentration of dissociated ions is greater than the concentration of liquefied acid, [\[\;HA\]]
Illustrations (take up the total concentration of acid is\[1{\text{ }}M\]):
If \[K_a = 0.03\;\] then the degree of dissociation is \[15.9\% ,\]then if
\[K_a = 0.05\;\] then the degree of dissociation is \[20.0\% ,\]and uncertainty
\[K_a = 3.8\;\] at that time the degree of dissociation is \[82.2\% \]
Additional information:
Dissociation in Chemistry and biochemistry is a complete procedure in which particles (or ionic compounds for instance salts, or complexes) dispersed or split into slighter particles such as atoms, ions, or radicals, typically in a reversible manner. Such as, when an acid dissolves in water, a covalent bond among an electronegative atom and a hydrogen atom is damaged by heterolytic fission, which stretches a proton \[({H^ + })\] and a negative ion.
Dissociation is the reverse of association or recombination.
The degree of dissociation is the occurrence of generating current resounding free ions, which are dissociated on or after the fraction of solute at a specified concentration.
Note: An acid dissociation continual (\[K_a\]) is a quantifiable measure of the strong point of a critical solution.
An acid \[K_a\], (similarly predictable as acidity continual, or acid-ionization constant) is a quantifiable quantity of the strong point of an acid in solution. This one is the equilibrium constant for a chemical reaction.
\[HA{\text{ }} \leftrightarrow {H^ + } + {A^ - }\]
Complete step by step answer:
The greater the value of \[K_a\], the greater the range of dissociation.
For several acid,\[\;HA\] , we can inscribe the dissociation process as
\[HA\left( {aq} \right){\text{ }} \leftrightarrow {H^ + }\left( {aq} \right){\text{ }} + {\text{ }}{A^ - }\left( {aq} \right)\]
The equilibrium constant for this process is definite as the proportion of equilibrium products and reactants:
${K_a} = ([{H^ + }][{A^ - }])/([HA])$$ K_a$ is huge, then the concentration of dissociated ions is greater than the concentration of liquefied acid, [\[\;HA\]]
Illustrations (take up the total concentration of acid is\[1{\text{ }}M\]):
If \[K_a = 0.03\;\] then the degree of dissociation is \[15.9\% ,\]then if
\[K_a = 0.05\;\] then the degree of dissociation is \[20.0\% ,\]and uncertainty
\[K_a = 3.8\;\] at that time the degree of dissociation is \[82.2\% \]
Additional information:
Dissociation in Chemistry and biochemistry is a complete procedure in which particles (or ionic compounds for instance salts, or complexes) dispersed or split into slighter particles such as atoms, ions, or radicals, typically in a reversible manner. Such as, when an acid dissolves in water, a covalent bond among an electronegative atom and a hydrogen atom is damaged by heterolytic fission, which stretches a proton \[({H^ + })\] and a negative ion.
Dissociation is the reverse of association or recombination.
The degree of dissociation is the occurrence of generating current resounding free ions, which are dissociated on or after the fraction of solute at a specified concentration.
Note: An acid dissociation continual (\[K_a\]) is a quantifiable measure of the strong point of a critical solution.
An acid \[K_a\], (similarly predictable as acidity continual, or acid-ionization constant) is a quantifiable quantity of the strong point of an acid in solution. This one is the equilibrium constant for a chemical reaction.
\[HA{\text{ }} \leftrightarrow {H^ + } + {A^ - }\]
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
