
How does the degree of dissociation affect \[K_a\]?
Answer
552.3k+ views
Hint: The \[K_a\] value is started by looking at the equilibrium constant for the dissociation of the acid. The upper the \[K_a\], the more the acid dissociates. Thus, resilient acids must dissociate in water. In contrast, a weak acid is less expected to ionize and release a hydrogen ion, consequently resulting in a less acidic.
Complete step by step answer:
The greater the value of \[K_a\], the greater the range of dissociation.
For several acid,\[\;HA\] , we can inscribe the dissociation process as
\[HA\left( {aq} \right){\text{ }} \leftrightarrow {H^ + }\left( {aq} \right){\text{ }} + {\text{ }}{A^ - }\left( {aq} \right)\]
The equilibrium constant for this process is definite as the proportion of equilibrium products and reactants:
${K_a} = ([{H^ + }][{A^ - }])/([HA])$$ K_a$ is huge, then the concentration of dissociated ions is greater than the concentration of liquefied acid, [\[\;HA\]]
Illustrations (take up the total concentration of acid is\[1{\text{ }}M\]):
If \[K_a = 0.03\;\] then the degree of dissociation is \[15.9\% ,\]then if
\[K_a = 0.05\;\] then the degree of dissociation is \[20.0\% ,\]and uncertainty
\[K_a = 3.8\;\] at that time the degree of dissociation is \[82.2\% \]
Additional information:
Dissociation in Chemistry and biochemistry is a complete procedure in which particles (or ionic compounds for instance salts, or complexes) dispersed or split into slighter particles such as atoms, ions, or radicals, typically in a reversible manner. Such as, when an acid dissolves in water, a covalent bond among an electronegative atom and a hydrogen atom is damaged by heterolytic fission, which stretches a proton \[({H^ + })\] and a negative ion.
Dissociation is the reverse of association or recombination.
The degree of dissociation is the occurrence of generating current resounding free ions, which are dissociated on or after the fraction of solute at a specified concentration.
Note: An acid dissociation continual (\[K_a\]) is a quantifiable measure of the strong point of a critical solution.
An acid \[K_a\], (similarly predictable as acidity continual, or acid-ionization constant) is a quantifiable quantity of the strong point of an acid in solution. This one is the equilibrium constant for a chemical reaction.
\[HA{\text{ }} \leftrightarrow {H^ + } + {A^ - }\]
Complete step by step answer:
The greater the value of \[K_a\], the greater the range of dissociation.
For several acid,\[\;HA\] , we can inscribe the dissociation process as
\[HA\left( {aq} \right){\text{ }} \leftrightarrow {H^ + }\left( {aq} \right){\text{ }} + {\text{ }}{A^ - }\left( {aq} \right)\]
The equilibrium constant for this process is definite as the proportion of equilibrium products and reactants:
${K_a} = ([{H^ + }][{A^ - }])/([HA])$$ K_a$ is huge, then the concentration of dissociated ions is greater than the concentration of liquefied acid, [\[\;HA\]]
Illustrations (take up the total concentration of acid is\[1{\text{ }}M\]):
If \[K_a = 0.03\;\] then the degree of dissociation is \[15.9\% ,\]then if
\[K_a = 0.05\;\] then the degree of dissociation is \[20.0\% ,\]and uncertainty
\[K_a = 3.8\;\] at that time the degree of dissociation is \[82.2\% \]
Additional information:
Dissociation in Chemistry and biochemistry is a complete procedure in which particles (or ionic compounds for instance salts, or complexes) dispersed or split into slighter particles such as atoms, ions, or radicals, typically in a reversible manner. Such as, when an acid dissolves in water, a covalent bond among an electronegative atom and a hydrogen atom is damaged by heterolytic fission, which stretches a proton \[({H^ + })\] and a negative ion.
Dissociation is the reverse of association or recombination.
The degree of dissociation is the occurrence of generating current resounding free ions, which are dissociated on or after the fraction of solute at a specified concentration.
Note: An acid dissociation continual (\[K_a\]) is a quantifiable measure of the strong point of a critical solution.
An acid \[K_a\], (similarly predictable as acidity continual, or acid-ionization constant) is a quantifiable quantity of the strong point of an acid in solution. This one is the equilibrium constant for a chemical reaction.
\[HA{\text{ }} \leftrightarrow {H^ + } + {A^ - }\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

