Courses for Kids
Free study material
Offline Centres
Store Icon

How does the degree of dissociation affect \[K_a\]?

Last updated date: 18th Jun 2024
Total views: 372.3k
Views today: 9.72k
372.3k+ views
Hint: The \[K_a\] value is started by looking at the equilibrium constant for the dissociation of the acid. The upper the \[K_a\], the more the acid dissociates. Thus, resilient acids must dissociate in water. In contrast, a weak acid is less expected to ionize and release a hydrogen ion, consequently resulting in a less acidic.

Complete step by step answer:
The greater the value of \[K_a\], the greater the range of dissociation.
For several acid,\[\;HA\] , we can inscribe the dissociation process as
\[HA\left( {aq} \right){\text{ }} \leftrightarrow {H^ + }\left( {aq} \right){\text{ }} + {\text{ }}{A^ - }\left( {aq} \right)\]
The equilibrium constant for this process is definite as the proportion of equilibrium products and reactants:
${K_a} = ([{H^ + }][{A^ - }])/([HA])$$ K_a$ is huge, then the concentration of dissociated ions is greater than the concentration of liquefied acid, [\[\;HA\]]
Illustrations (take up the total concentration of acid is\[1{\text{ }}M\]):
If \[K_a = 0.03\;\] then the degree of dissociation is \[15.9\% ,\]then if
\[K_a = 0.05\;\] then the degree of dissociation is \[20.0\% ,\]and uncertainty
\[K_a = 3.8\;\] at that time the degree of dissociation is \[82.2\% \]

Additional information:
Dissociation in Chemistry and biochemistry is a complete procedure in which particles (or ionic compounds for instance salts, or complexes) dispersed or split into slighter particles such as atoms, ions, or radicals, typically in a reversible manner. Such as, when an acid dissolves in water, a covalent bond among an electronegative atom and a hydrogen atom is damaged by heterolytic fission, which stretches a proton \[({H^ + })\] and a negative ion.
Dissociation is the reverse of association or recombination.
The degree of dissociation is the occurrence of generating current resounding free ions, which are dissociated on or after the fraction of solute at a specified concentration.

Note: An acid dissociation continual (\[K_a\]) is a quantifiable measure of the strong point of a critical solution.
An acid \[K_a\], (similarly predictable as acidity continual, or acid-ionization constant) is a quantifiable quantity of the strong point of an acid in solution. This one is the equilibrium constant for a chemical reaction.
 \[HA{\text{ }} \leftrightarrow {H^ + } + {A^ - }\]