Answer
Verified
408k+ views
Hint:For simplifying the original equation , firstly used logarithm property
$\log a + \log b = \log ab$ then take base twenty seven exponential of both sides of the equation, then apply the logarithm formula ${b^{{{\log }_b}a}} = a$ to simplify the given equation .
Formula used:
We used logarithm properties i.e.
$\log a + \log b = \log (ab)$ ,
${b^{{{\log }_b}a}} = a$
and
We also used quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete solution step by step:
It is given that ,
${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
We have to solve for $x$ .
We can manipulate the above equation as ,
${\log _{27}}x + {\log _{27}}(x - 0.4) = 1$
Now using logarithm property $\log a + \log b = \log ab$ ,
We will get,
${\log _{27}}x(x - 0.4) = 1$
Now , by assuming the base of the logarithm to be $27$ ,then take the base $27$ exponential of both sides of the equation, we will get the following result ,
For equation one ,
${27^{{{\log }_{27}}\left( {x(x - 0.4} \right)}} = {27^1}$
By applying the logarithm formula ${b^{{{\log }_b}a}} = a$ . we will get the following result ,
$x(x - 0.4) = 27$
Or
$
{x^2} - 0.4x - 27 = 0 \\
or \\
10{x^2} - 4x - 270 = 0 \\
$
For finding roots of the original equation, we have to use quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now identify $a,b,c$ from the original equation given below,
$ \Rightarrow 10{x^2} - 4x - 270 = 0$
$
\Rightarrow a = 10 \\
\Rightarrow b = - 4 \\
\Rightarrow c = - 270 \\
$
Put these values into the formula of finding the roots of quadratic equations,
$x = \dfrac{{4 \pm \sqrt {{4^2} - 4*10*( - 270)} }}{{2*10}}$
After simplifying and by evaluating exponents and square root of the above equation we get the following simplified expression,
$x = \dfrac{{4 \pm 104}}{{20}}$
To find the roots of the equations , separate the particular equation into its corresponding parts : one part with the plus sign and the other with the minus sign ,
$
\Rightarrow {x_1} = \dfrac{{4 + 104}}{{20}} \\
and \\
\Rightarrow {x_2} = \dfrac{{4 - 104}}{{20}} \\
$
Simplify and then isolate $x$ to find its corresponding solutions!
$
\Rightarrow {x_1} = 5.4 \\
and \\
\Rightarrow {x_2} = - 5 \\
$
Now recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Therefore, in our original equation ${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
Here,
$
(x - 0.4) > 0 \\
and \\
(x) > 0 \\
$
Now after evaluating both the values, $ - 5$ is rejected because it is less than zero. While $5.4$ is greater than zero and $5.4 - 0.4 > 0$ .
Therefore, we have our solution i.e., $5.4$ .
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have to remember certain conditions , our end result must satisfy the domain of that logarithm .
$\log a + \log b = \log ab$ then take base twenty seven exponential of both sides of the equation, then apply the logarithm formula ${b^{{{\log }_b}a}} = a$ to simplify the given equation .
Formula used:
We used logarithm properties i.e.
$\log a + \log b = \log (ab)$ ,
${b^{{{\log }_b}a}} = a$
and
We also used quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete solution step by step:
It is given that ,
${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
We have to solve for $x$ .
We can manipulate the above equation as ,
${\log _{27}}x + {\log _{27}}(x - 0.4) = 1$
Now using logarithm property $\log a + \log b = \log ab$ ,
We will get,
${\log _{27}}x(x - 0.4) = 1$
Now , by assuming the base of the logarithm to be $27$ ,then take the base $27$ exponential of both sides of the equation, we will get the following result ,
For equation one ,
${27^{{{\log }_{27}}\left( {x(x - 0.4} \right)}} = {27^1}$
By applying the logarithm formula ${b^{{{\log }_b}a}} = a$ . we will get the following result ,
$x(x - 0.4) = 27$
Or
$
{x^2} - 0.4x - 27 = 0 \\
or \\
10{x^2} - 4x - 270 = 0 \\
$
For finding roots of the original equation, we have to use quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now identify $a,b,c$ from the original equation given below,
$ \Rightarrow 10{x^2} - 4x - 270 = 0$
$
\Rightarrow a = 10 \\
\Rightarrow b = - 4 \\
\Rightarrow c = - 270 \\
$
Put these values into the formula of finding the roots of quadratic equations,
$x = \dfrac{{4 \pm \sqrt {{4^2} - 4*10*( - 270)} }}{{2*10}}$
After simplifying and by evaluating exponents and square root of the above equation we get the following simplified expression,
$x = \dfrac{{4 \pm 104}}{{20}}$
To find the roots of the equations , separate the particular equation into its corresponding parts : one part with the plus sign and the other with the minus sign ,
$
\Rightarrow {x_1} = \dfrac{{4 + 104}}{{20}} \\
and \\
\Rightarrow {x_2} = \dfrac{{4 - 104}}{{20}} \\
$
Simplify and then isolate $x$ to find its corresponding solutions!
$
\Rightarrow {x_1} = 5.4 \\
and \\
\Rightarrow {x_2} = - 5 \\
$
Now recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Therefore, in our original equation ${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
Here,
$
(x - 0.4) > 0 \\
and \\
(x) > 0 \\
$
Now after evaluating both the values, $ - 5$ is rejected because it is less than zero. While $5.4$ is greater than zero and $5.4 - 0.4 > 0$ .
Therefore, we have our solution i.e., $5.4$ .
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have to remember certain conditions , our end result must satisfy the domain of that logarithm .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell