Discuss the position of the points $\left[ {1,2} \right]$ and $\left[ {6,0} \right]$ with respect to the circle ${x^2} + {y^2} - 4x + 2y - 11 = 0$.
Last updated date: 20th Mar 2023
•
Total views: 309k
•
Views today: 5.87k
Answer
309k+ views
Hint- Here, we will proceed by using the formula for the position of a point with respect to a given circle.
Given, equation of circle is ${x^2} + {y^2} - 4x + 2y - 11 = 0$
Let the given points be ${\text{P}}\left[ {1,2} \right]$ and ${\text{Q}}\left[ {6,0} \right]$.
As we know that any point ${\text{A}}\left[ {a,b} \right]$ lies inside, on or outside the circle ${\text{S: }}{x^2} + {y^2} + 2gx + 2fy + c = 0$ according to as ${{\text{S}}_1}$ is less than or equal to or greater than zero respectively where ${{\text{S}}_1} = {\left( a \right)^2} + {\left( b \right)^2} + 2g\left( a \right) + 2f\left( b \right) + c$.
For point ${\text{P}}\left[ {1,2} \right]$, ${{\text{S}}_1} = {1^2} + {2^2} - 4 \times 1 + 2 \times 2 - 11 = 1 + 4 - 4 + 4 - 11 = - 6 < 0$
Since, ${{\text{S}}_1}$ is less than zero which means that point ${\text{P}}\left[ {1,2} \right]$ lies inside the circle.
For point ${\text{Q}}\left[ {6,0} \right]$, ${{\text{S}}_2} = {6^2} + 0 - 4 \times 6 + 2 \times 0 - 11 = 36 - 24 - 11 = 1 > 0$
Since, ${{\text{S}}_2}$ is greater than zero which means that point ${\text{Q}}\left[ {6,0} \right]$ lies outside the circle.
Note- In these types of problems, simply substitute the x and y coordinates of the point in the LHS of the given equation of circle provided the RHS of the given equation of circle is zero and determine the value obtained. Then, finally by comparing it with the formula we get to know whether the given point lies inside, on or outside of the circle.
Given, equation of circle is ${x^2} + {y^2} - 4x + 2y - 11 = 0$
Let the given points be ${\text{P}}\left[ {1,2} \right]$ and ${\text{Q}}\left[ {6,0} \right]$.
As we know that any point ${\text{A}}\left[ {a,b} \right]$ lies inside, on or outside the circle ${\text{S: }}{x^2} + {y^2} + 2gx + 2fy + c = 0$ according to as ${{\text{S}}_1}$ is less than or equal to or greater than zero respectively where ${{\text{S}}_1} = {\left( a \right)^2} + {\left( b \right)^2} + 2g\left( a \right) + 2f\left( b \right) + c$.
For point ${\text{P}}\left[ {1,2} \right]$, ${{\text{S}}_1} = {1^2} + {2^2} - 4 \times 1 + 2 \times 2 - 11 = 1 + 4 - 4 + 4 - 11 = - 6 < 0$
Since, ${{\text{S}}_1}$ is less than zero which means that point ${\text{P}}\left[ {1,2} \right]$ lies inside the circle.
For point ${\text{Q}}\left[ {6,0} \right]$, ${{\text{S}}_2} = {6^2} + 0 - 4 \times 6 + 2 \times 0 - 11 = 36 - 24 - 11 = 1 > 0$
Since, ${{\text{S}}_2}$ is greater than zero which means that point ${\text{Q}}\left[ {6,0} \right]$ lies outside the circle.
Note- In these types of problems, simply substitute the x and y coordinates of the point in the LHS of the given equation of circle provided the RHS of the given equation of circle is zero and determine the value obtained. Then, finally by comparing it with the formula we get to know whether the given point lies inside, on or outside of the circle.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
