
Discuss the position of the points $\left[ {1,2} \right]$ and $\left[ {6,0} \right]$ with respect to the circle ${x^2} + {y^2} - 4x + 2y - 11 = 0$.
Answer
623.7k+ views
Hint- Here, we will proceed by using the formula for the position of a point with respect to a given circle.
Given, equation of circle is ${x^2} + {y^2} - 4x + 2y - 11 = 0$
Let the given points be ${\text{P}}\left[ {1,2} \right]$ and ${\text{Q}}\left[ {6,0} \right]$.
As we know that any point ${\text{A}}\left[ {a,b} \right]$ lies inside, on or outside the circle ${\text{S: }}{x^2} + {y^2} + 2gx + 2fy + c = 0$ according to as ${{\text{S}}_1}$ is less than or equal to or greater than zero respectively where ${{\text{S}}_1} = {\left( a \right)^2} + {\left( b \right)^2} + 2g\left( a \right) + 2f\left( b \right) + c$.
For point ${\text{P}}\left[ {1,2} \right]$, ${{\text{S}}_1} = {1^2} + {2^2} - 4 \times 1 + 2 \times 2 - 11 = 1 + 4 - 4 + 4 - 11 = - 6 < 0$
Since, ${{\text{S}}_1}$ is less than zero which means that point ${\text{P}}\left[ {1,2} \right]$ lies inside the circle.
For point ${\text{Q}}\left[ {6,0} \right]$, ${{\text{S}}_2} = {6^2} + 0 - 4 \times 6 + 2 \times 0 - 11 = 36 - 24 - 11 = 1 > 0$
Since, ${{\text{S}}_2}$ is greater than zero which means that point ${\text{Q}}\left[ {6,0} \right]$ lies outside the circle.
Note- In these types of problems, simply substitute the x and y coordinates of the point in the LHS of the given equation of circle provided the RHS of the given equation of circle is zero and determine the value obtained. Then, finally by comparing it with the formula we get to know whether the given point lies inside, on or outside of the circle.
Given, equation of circle is ${x^2} + {y^2} - 4x + 2y - 11 = 0$
Let the given points be ${\text{P}}\left[ {1,2} \right]$ and ${\text{Q}}\left[ {6,0} \right]$.
As we know that any point ${\text{A}}\left[ {a,b} \right]$ lies inside, on or outside the circle ${\text{S: }}{x^2} + {y^2} + 2gx + 2fy + c = 0$ according to as ${{\text{S}}_1}$ is less than or equal to or greater than zero respectively where ${{\text{S}}_1} = {\left( a \right)^2} + {\left( b \right)^2} + 2g\left( a \right) + 2f\left( b \right) + c$.
For point ${\text{P}}\left[ {1,2} \right]$, ${{\text{S}}_1} = {1^2} + {2^2} - 4 \times 1 + 2 \times 2 - 11 = 1 + 4 - 4 + 4 - 11 = - 6 < 0$
Since, ${{\text{S}}_1}$ is less than zero which means that point ${\text{P}}\left[ {1,2} \right]$ lies inside the circle.
For point ${\text{Q}}\left[ {6,0} \right]$, ${{\text{S}}_2} = {6^2} + 0 - 4 \times 6 + 2 \times 0 - 11 = 36 - 24 - 11 = 1 > 0$
Since, ${{\text{S}}_2}$ is greater than zero which means that point ${\text{Q}}\left[ {6,0} \right]$ lies outside the circle.
Note- In these types of problems, simply substitute the x and y coordinates of the point in the LHS of the given equation of circle provided the RHS of the given equation of circle is zero and determine the value obtained. Then, finally by comparing it with the formula we get to know whether the given point lies inside, on or outside of the circle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

