Discuss the applicability of Lagrange's mean value theorem for the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$.
Answer
Verified
506.7k+ views
Hint: In this question, for applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ {a,b} \right]$, function must be continuous in $\left[ {a,b} \right]$ and differentiable in (a,b).
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE