
Discuss the applicability of Lagrange's mean value theorem for the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$.
Answer
595.2k+ views
Hint: In this question, for applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ {a,b} \right]$, function must be continuous in $\left[ {a,b} \right]$ and differentiable in (a,b).
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

