
Discuss the applicability of Lagrange's mean value theorem for the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$.
Answer
602.7k+ views
Hint: In this question, for applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ {a,b} \right]$, function must be continuous in $\left[ {a,b} \right]$ and differentiable in (a,b).
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

