
Discriminant of the following quadratic equation is: $2{x^2} - 5x + 3 = 0$.
Answer
622.8k+ views
Hint: We solve this problem by using the formula for finding the discriminant of
quadratic equations
.
The given quadratic equation is $2{x^2} - 5x + 3 = 0$
Comparing the given equation with$a{x^2} + bx + c = 0$, we get $a = 2,b = - 5,c = 3$
Formula for finding the discriminant of quadratic equation$D = {b^2} - 4ac$$ \to (1)$
Substituting a, b and c values in equation (1)
$ \Rightarrow D = {( - 5)^2} - 4(2)(3)$
$D = 25 - 24 = 1$
$\therefore $Discriminant of the given quadratic equation $2{x^2} - 5x + 3 = 0$ is 1.
Note: General form of quadratic equation is$a{x^2} + bx + c = 0$. Discriminant of any quadratic equation is $D = {b^2} - 4ac$. The discriminant tells us whether there are two
solutions, one solution or no solution for the given quadratic equation. If D>0, then the
equation has two real solutions. If D=0, then there are no solutions for the equation. If D<0,
then there is one solution. Here in our case we got Discriminant value as 1. So the given
quadratic equation has two real solutions (two real roots).
quadratic equations
.
The given quadratic equation is $2{x^2} - 5x + 3 = 0$
Comparing the given equation with$a{x^2} + bx + c = 0$, we get $a = 2,b = - 5,c = 3$
Formula for finding the discriminant of quadratic equation$D = {b^2} - 4ac$$ \to (1)$
Substituting a, b and c values in equation (1)
$ \Rightarrow D = {( - 5)^2} - 4(2)(3)$
$D = 25 - 24 = 1$
$\therefore $Discriminant of the given quadratic equation $2{x^2} - 5x + 3 = 0$ is 1.
Note: General form of quadratic equation is$a{x^2} + bx + c = 0$. Discriminant of any quadratic equation is $D = {b^2} - 4ac$. The discriminant tells us whether there are two
solutions, one solution or no solution for the given quadratic equation. If D>0, then the
equation has two real solutions. If D=0, then there are no solutions for the equation. If D<0,
then there is one solution. Here in our case we got Discriminant value as 1. So the given
quadratic equation has two real solutions (two real roots).
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

