Director Circle of parabola \[{\left( {x - 2} \right)^2} = 16\left( {y + 7} \right)\] touches the circle ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$ then ${r^2}$ is:
A) \[12\]
B) \[144\;\]
C) \[10\;\]
D) \[100\]
Last updated date: 17th Mar 2023
•
Total views: 205.2k
•
Views today: 3.84k
Answer
205.2k+ views
Hint: In the conic section the director circle of a parabola \[{\left( {x - 2} \right)^2} = 16\left( {y + 7} \right)\] is the directrix of the curve. In this problem first we consider the terms $\left( {x - 2} \right)$ as X and $\left( {y + 7} \right)$ as Y. and the equation so formed compare with ${x^2} = 4ay$ and by this we find the value of a. Then we use the general equation of the directrix of a parabola $y + a = 0$ for getting the equation of the directrix of the given parabola.
Given a circle touches ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$ the directrix of given parabola so it becomes tangent of parabola therefore we find the perpendicular distance of this directrix from the center of the circle. The perpendicular distance is the radius of the given circle. by taking the square of radius ${r^2}$ we get the required answer.
Complete step by step solution:
Given parabola \[{\left( {x - 2} \right)^2} = 16\left( {y + 7} \right)\]
Let us consider the terms $\left( {x - 2} \right)$ as X and $\left( {y + 7} \right)$ as Y.
Then the given parabola become
${X^2} = 16Y$ ----------------(1)
We compare equation (1) with the general equation of parabola i.e. ${x^2} = 4ay$
On comparing this we get
$
4a = 16 \\
\Rightarrow a = \dfrac{{16}}{4} \\
\Rightarrow a = 4 \\
$
Since, the general equation of directrix of parabola ${x^2} = 4ay$ is $y + a = 0$
By using this equation we get the equation of directrix of given parabola
$Y + 4 = 0$
Now on putting $Y$ as $\left( {y + 7} \right)$ , we get
$y + 7 + 4 = 0$
$ \Rightarrow y + 11 = 0$ ------------- (2)
Given, the circle equation is ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$.
On comparing the above equation with the general equation of circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ whose center is $\left( {h,k} \right)$
We get the center of the given circle which will be C $\left( { - 1,1} \right)$.
Since the directrix of a given parabola is tangent on this circle.
Now, we can draw a graph for the given parabola and center of circle.
So we find the perpendicular distance of directrix [equation (2)] from the center of the circle C $\left( { - 1,1} \right)$. This perpendicular distance is the radius of the circle.
$
r = \left| {\dfrac{{1 + 11}}{{\sqrt {{1^2}} }}} \right| \\
\Rightarrow r = \left| {\dfrac{{12}}{1}} \right| \\
\Rightarrow r = 12 \\
$
Therefore the radius ($r$) of the circle is $12$ unit.
On taking square of ‘$r$’ we get the value of ${r^2}$
$
{r^2} = {\left( {12} \right)^2} \\
\Rightarrow {r^2} = 144 \\
$
Therefore, Director Circle of parabola \[{\left( {x - 2} \right)^2} = 16\left( {y + 7} \right)\] touches the circle ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$ then ${r^2}$ is \[144\]. Hence the correct answer is option (B).
Note:
> The use of the general form equation of curves and related terms in the general form is often a critical part of the solution in the conic section.
> We were supposed to find the equation of the director circle in this question, but instead we got the equation of the directrix, which is a straight line.
> In this case, a straight line is represented by a circle with an infinite diameter.
> The equation of the director circle is in the form of a circle, not a straight line, for curves like ellipse and hyperbola.
Given a circle touches ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$ the directrix of given parabola so it becomes tangent of parabola therefore we find the perpendicular distance of this directrix from the center of the circle. The perpendicular distance is the radius of the given circle. by taking the square of radius ${r^2}$ we get the required answer.
Complete step by step solution:
Given parabola \[{\left( {x - 2} \right)^2} = 16\left( {y + 7} \right)\]
Let us consider the terms $\left( {x - 2} \right)$ as X and $\left( {y + 7} \right)$ as Y.
Then the given parabola become
${X^2} = 16Y$ ----------------(1)
We compare equation (1) with the general equation of parabola i.e. ${x^2} = 4ay$
On comparing this we get
$
4a = 16 \\
\Rightarrow a = \dfrac{{16}}{4} \\
\Rightarrow a = 4 \\
$
Since, the general equation of directrix of parabola ${x^2} = 4ay$ is $y + a = 0$
By using this equation we get the equation of directrix of given parabola
$Y + 4 = 0$
Now on putting $Y$ as $\left( {y + 7} \right)$ , we get
$y + 7 + 4 = 0$
$ \Rightarrow y + 11 = 0$ ------------- (2)
Given, the circle equation is ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$.
On comparing the above equation with the general equation of circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ whose center is $\left( {h,k} \right)$
We get the center of the given circle which will be C $\left( { - 1,1} \right)$.
Since the directrix of a given parabola is tangent on this circle.
Now, we can draw a graph for the given parabola and center of circle.

So we find the perpendicular distance of directrix [equation (2)] from the center of the circle C $\left( { - 1,1} \right)$. This perpendicular distance is the radius of the circle.
$
r = \left| {\dfrac{{1 + 11}}{{\sqrt {{1^2}} }}} \right| \\
\Rightarrow r = \left| {\dfrac{{12}}{1}} \right| \\
\Rightarrow r = 12 \\
$
Therefore the radius ($r$) of the circle is $12$ unit.
On taking square of ‘$r$’ we get the value of ${r^2}$
$
{r^2} = {\left( {12} \right)^2} \\
\Rightarrow {r^2} = 144 \\
$
Therefore, Director Circle of parabola \[{\left( {x - 2} \right)^2} = 16\left( {y + 7} \right)\] touches the circle ${\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = {r^2}$ then ${r^2}$ is \[144\]. Hence the correct answer is option (B).
Note:
> The use of the general form equation of curves and related terms in the general form is often a critical part of the solution in the conic section.
> We were supposed to find the equation of the director circle in this question, but instead we got the equation of the directrix, which is a straight line.
> In this case, a straight line is represented by a circle with an infinite diameter.
> The equation of the director circle is in the form of a circle, not a straight line, for curves like ellipse and hyperbola.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
