
How do you differentiate \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = 4\] ?
Answer
540.3k+ views
Hint: We can start with differentiating both the sides of the equation. We can use the Sum Rule, Power Rules and the Chain Rule here. After that we will solve as well as simplify all the terms to get the answer.
Complete step by step solution:
The given equation is: \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = 4\].
First, we have to start by differentiating on both the sides:
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}(4)\]
When we apply the sum rule on the left side of the equation to the derivative \[\left( {{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}}} \right)\] with respect to “x”, we get:
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, we will solve \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\]. We will differentiate by applying power rule that says:
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\,;\,where\,n = \dfrac{2}{3}\]. Therefore, we will get:
\[\dfrac{2}{3}\left( {{x^{\dfrac{2}{3} - 1}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
\[\Rightarrow\dfrac{2}{3}\left( {{x^{\dfrac{2}{3} - 1 \times \dfrac{3}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\] (Here, we are multiplying \[ - 1\] with \[\dfrac{3}{3}\] to make \[ - 1\] a fraction)
\[\Rightarrow \dfrac{2}{3}\left( {{x^{\dfrac{2}{3} + \dfrac{{ - 3}}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
\[ \Rightarrow \dfrac{2}{3}\left( {{x^{\dfrac{{2 - 3}}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, for simplifying the numerator, we will multiply \[ - 1\] with \[3\].
\[\dfrac{2}{3}\left( {{x^{\dfrac{{2 - 3}}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
\[\Rightarrow\dfrac{2}{3}\left( {{x^{ - \dfrac{1}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, we will solve \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, we will use the Chain Rule here that says:
\[\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right)\, = f'\left( {g\left( x \right)} \right)g'\left( x \right)\,\,where\,f\left( x \right) = {x^{\dfrac{2}{3}}};\,g\left( x \right) = y\]
Here, we will change “y” as “u”:
\[ \dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{d}{{du}}\left( {{u^{\dfrac{2}{3}}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
Now, I will replace the “y” in the place of “u”.
\[\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}\left( {{y^{\dfrac{2}{3} - 1}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
Now, we will again multiply \[ - 1\] with \[3\], for simplifying the numerator:
\[\Rightarrow \dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}\left( {{y^{\dfrac{2}{3} - 1 \times \dfrac{3}{3}}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
\[\Rightarrow \dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}\left( {{y^{\dfrac{1}{3}}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
Now, we will try combine the terms that are together here:
\[\Rightarrow\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{{2{y^{\dfrac{{ - 1}}{3}}}}}{3}\dfrac{d}{{dx}}\left( y \right)\]
\[ \Rightarrow \dfrac{2}{3} \times \dfrac{1}{{{x^{\dfrac{1}{3}}}}} + \dfrac{2}{{3{y^{\dfrac{1}{3}}}}}\dfrac{d}{{dx}}\left( y \right)\]
Now, we will try to simplify:
\[\dfrac{2}{{3{x^{\dfrac{1}{3}}}}} + \dfrac{2}{{3{y^{\dfrac{1}{3}}}}}\dfrac{d}{{dx}}\left( y \right)\]
We know that the derivative of \[4\] with respect to “x” is \[0\].
When we write the equation now:
\[ \dfrac{2}{{3{x^{\dfrac{1}{3}}}}} + \dfrac{2}{{3{y^{\dfrac{1}{3}}}}}y'\,\,\,where\,y' = \dfrac{d}{{dx}}(y)\]
Now, we will solve for \[y'\]:
\[\dfrac{2}{{3{x^{\dfrac{1}{3}}}}} + \dfrac{{2 \times y'}}{{3{y^{\dfrac{1}{3}}}}} = 0\]
\[ \Rightarrow \dfrac{{2 \times y'}}{{3{y^{\dfrac{1}{3}}}}} = - \dfrac{2}{{3{x^{\dfrac{1}{3}}}}}\]
\[ \Rightarrow 2y' = - \dfrac{2}{{3{x^{\dfrac{1}{3}}}}} \cdot \left( {3{y^{\dfrac{1}{3}}}} \right)\]
Now, we will simplify \[ - \dfrac{2}{{3{x^{\dfrac{1}{3}}}}} \cdot \left( {3{y^{\dfrac{1}{3}}}} \right)\]:
\[ \Rightarrow 2y' = - \dfrac{2}{{{x^{\dfrac{1}{3}}}}} \cdot \left( {{y^{\dfrac{1}{3}}}} \right)\]
\[ \Rightarrow 2y' = - \dfrac{{2{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}}\]
\[ \Rightarrow y' = - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}}\]
We will now replace \[\dfrac{{dy}}{{dx}}\]in the place of \[y'\]:
\[ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}}\]
Note: This method is easy but it is very lengthy. There is another method which is easy as well as gets solved very quickly. The method is the implicit differentiation. In this method we will take “y” as the function of “x” and solve the equation.
Complete step by step solution:
The given equation is: \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = 4\].
First, we have to start by differentiating on both the sides:
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}(4)\]
When we apply the sum rule on the left side of the equation to the derivative \[\left( {{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}}} \right)\] with respect to “x”, we get:
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, we will solve \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\]. We will differentiate by applying power rule that says:
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\,;\,where\,n = \dfrac{2}{3}\]. Therefore, we will get:
\[\dfrac{2}{3}\left( {{x^{\dfrac{2}{3} - 1}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
\[\Rightarrow\dfrac{2}{3}\left( {{x^{\dfrac{2}{3} - 1 \times \dfrac{3}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\] (Here, we are multiplying \[ - 1\] with \[\dfrac{3}{3}\] to make \[ - 1\] a fraction)
\[\Rightarrow \dfrac{2}{3}\left( {{x^{\dfrac{2}{3} + \dfrac{{ - 3}}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
\[ \Rightarrow \dfrac{2}{3}\left( {{x^{\dfrac{{2 - 3}}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, for simplifying the numerator, we will multiply \[ - 1\] with \[3\].
\[\dfrac{2}{3}\left( {{x^{\dfrac{{2 - 3}}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
\[\Rightarrow\dfrac{2}{3}\left( {{x^{ - \dfrac{1}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, we will solve \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\]
Now, we will use the Chain Rule here that says:
\[\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right)\, = f'\left( {g\left( x \right)} \right)g'\left( x \right)\,\,where\,f\left( x \right) = {x^{\dfrac{2}{3}}};\,g\left( x \right) = y\]
Here, we will change “y” as “u”:
\[ \dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{d}{{du}}\left( {{u^{\dfrac{2}{3}}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
Now, I will replace the “y” in the place of “u”.
\[\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}\left( {{y^{\dfrac{2}{3} - 1}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
Now, we will again multiply \[ - 1\] with \[3\], for simplifying the numerator:
\[\Rightarrow \dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}\left( {{y^{\dfrac{2}{3} - 1 \times \dfrac{3}{3}}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
\[\Rightarrow \dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}\left( {{y^{\dfrac{1}{3}}}} \right)\dfrac{d}{{dx}}\left( y \right)\]
Now, we will try combine the terms that are together here:
\[\Rightarrow\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{{2{y^{\dfrac{{ - 1}}{3}}}}}{3}\dfrac{d}{{dx}}\left( y \right)\]
\[ \Rightarrow \dfrac{2}{3} \times \dfrac{1}{{{x^{\dfrac{1}{3}}}}} + \dfrac{2}{{3{y^{\dfrac{1}{3}}}}}\dfrac{d}{{dx}}\left( y \right)\]
Now, we will try to simplify:
\[\dfrac{2}{{3{x^{\dfrac{1}{3}}}}} + \dfrac{2}{{3{y^{\dfrac{1}{3}}}}}\dfrac{d}{{dx}}\left( y \right)\]
We know that the derivative of \[4\] with respect to “x” is \[0\].
When we write the equation now:
\[ \dfrac{2}{{3{x^{\dfrac{1}{3}}}}} + \dfrac{2}{{3{y^{\dfrac{1}{3}}}}}y'\,\,\,where\,y' = \dfrac{d}{{dx}}(y)\]
Now, we will solve for \[y'\]:
\[\dfrac{2}{{3{x^{\dfrac{1}{3}}}}} + \dfrac{{2 \times y'}}{{3{y^{\dfrac{1}{3}}}}} = 0\]
\[ \Rightarrow \dfrac{{2 \times y'}}{{3{y^{\dfrac{1}{3}}}}} = - \dfrac{2}{{3{x^{\dfrac{1}{3}}}}}\]
\[ \Rightarrow 2y' = - \dfrac{2}{{3{x^{\dfrac{1}{3}}}}} \cdot \left( {3{y^{\dfrac{1}{3}}}} \right)\]
Now, we will simplify \[ - \dfrac{2}{{3{x^{\dfrac{1}{3}}}}} \cdot \left( {3{y^{\dfrac{1}{3}}}} \right)\]:
\[ \Rightarrow 2y' = - \dfrac{2}{{{x^{\dfrac{1}{3}}}}} \cdot \left( {{y^{\dfrac{1}{3}}}} \right)\]
\[ \Rightarrow 2y' = - \dfrac{{2{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}}\]
\[ \Rightarrow y' = - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}}\]
We will now replace \[\dfrac{{dy}}{{dx}}\]in the place of \[y'\]:
\[ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}}\]
Note: This method is easy but it is very lengthy. There is another method which is easy as well as gets solved very quickly. The method is the implicit differentiation. In this method we will take “y” as the function of “x” and solve the equation.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

