
Differentiate the function w.r.t x.
${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$ .
Answer
583.2k+ views
Hint: In this question remember to differentiate each function separately and use rules such as product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$ and chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function), using this information will help you to approach the solution.
Complete step-by-step answer:
According to the given information we have function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Let$y = {x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
And let $u = {x^{x\cos x}}$ and $v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Now y = u + v
Differentiating both side with respect to x we get
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$ (equation 1)
\[u = {x^{x\cos x}}\]
$ \Rightarrow $\[\log u = \log ({x^{x\cos x}})\]
$ \Rightarrow $\[\log u = x\cos x\log x\]
Differentiating both sides with respect to x, we obtain
\[\dfrac{{d\left( {\log u} \right)}}{{dx}} = \dfrac{{d\left( {x\cos x\log x} \right)}}{{dx}}\]
After applying the product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$
$\dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}(x).\cos x.\log x + x\dfrac{d}{{dx}}(\cos x).\log x + x\cos x.\dfrac{d}{{dx}}(\log x)$
We know that $\dfrac{{d\left( x \right)}}{{dx}} = 1$, $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$and $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = u\left[ {1.\cos x.\log x + x.( - \sin x)\log x + x\cos x.\dfrac{1}{x}} \right]$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}(\cos x.\log x - x.\sin x.\log x + \cos x)$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right]$(equation 2)
$v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Applying both sides, we get
$\log v = \log \left( {\dfrac{{{x^2} + 1}}{{{x^2} - 1}}} \right)$
Applying the quotient rule in the above equation i.e. $\log \left( {\dfrac{x}{y}} \right) = \log x - \log y$we get
$\log v = \log ({x^2} + 1) - \log ({x^2} - 1)$
Differentiating both sides with respect to x, we obtain
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}} - \dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\]
By applying the chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function) in the above equation we get
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \left( {\dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} + 1} \right)}}{{dx}}} \right) - \left( {\dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} - 1} \right)}}{{dx}}} \right)\]
We know that $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$and $\dfrac{d}{{dx}}\left( {{x^2} \pm 1} \right) = 2x$
Therefore, $\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}} - \dfrac{{2x}}{{{x^2} - 1}}$
$\dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2x({x^2} - 1) - 2x({x^2} + 1)}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}} \times \left[ {\dfrac{{ - 4x}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{ - 4x}}{{{{({x^2} - 1)}^2}}}$(equation 3)
Now substituting the values form (2) and (3) in the equation 1 er get
$\dfrac{{dy}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$
Therefore, after differentiating this function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$with respect to x we get ${x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$.
Note: In the above solution we came across the term “function” which can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y. Examples of functions are logarithmic functions, bijective functions, trigonometric functions, binary functions, etc.
Complete step-by-step answer:
According to the given information we have function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Let$y = {x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
And let $u = {x^{x\cos x}}$ and $v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Now y = u + v
Differentiating both side with respect to x we get
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$ (equation 1)
\[u = {x^{x\cos x}}\]
$ \Rightarrow $\[\log u = \log ({x^{x\cos x}})\]
$ \Rightarrow $\[\log u = x\cos x\log x\]
Differentiating both sides with respect to x, we obtain
\[\dfrac{{d\left( {\log u} \right)}}{{dx}} = \dfrac{{d\left( {x\cos x\log x} \right)}}{{dx}}\]
After applying the product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$
$\dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}(x).\cos x.\log x + x\dfrac{d}{{dx}}(\cos x).\log x + x\cos x.\dfrac{d}{{dx}}(\log x)$
We know that $\dfrac{{d\left( x \right)}}{{dx}} = 1$, $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$and $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = u\left[ {1.\cos x.\log x + x.( - \sin x)\log x + x\cos x.\dfrac{1}{x}} \right]$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}(\cos x.\log x - x.\sin x.\log x + \cos x)$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right]$(equation 2)
$v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Applying both sides, we get
$\log v = \log \left( {\dfrac{{{x^2} + 1}}{{{x^2} - 1}}} \right)$
Applying the quotient rule in the above equation i.e. $\log \left( {\dfrac{x}{y}} \right) = \log x - \log y$we get
$\log v = \log ({x^2} + 1) - \log ({x^2} - 1)$
Differentiating both sides with respect to x, we obtain
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}} - \dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\]
By applying the chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function) in the above equation we get
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \left( {\dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} + 1} \right)}}{{dx}}} \right) - \left( {\dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} - 1} \right)}}{{dx}}} \right)\]
We know that $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$and $\dfrac{d}{{dx}}\left( {{x^2} \pm 1} \right) = 2x$
Therefore, $\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}} - \dfrac{{2x}}{{{x^2} - 1}}$
$\dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2x({x^2} - 1) - 2x({x^2} + 1)}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}} \times \left[ {\dfrac{{ - 4x}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{ - 4x}}{{{{({x^2} - 1)}^2}}}$(equation 3)
Now substituting the values form (2) and (3) in the equation 1 er get
$\dfrac{{dy}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$
Therefore, after differentiating this function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$with respect to x we get ${x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$.
Note: In the above solution we came across the term “function” which can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y. Examples of functions are logarithmic functions, bijective functions, trigonometric functions, binary functions, etc.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

