Answer
Verified
455.4k+ views
Hint: In this question remember to differentiate each function separately and use rules such as product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$ and chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function), using this information will help you to approach the solution.
Complete step-by-step answer:
According to the given information we have function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Let$y = {x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
And let $u = {x^{x\cos x}}$ and $v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Now y = u + v
Differentiating both side with respect to x we get
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$ (equation 1)
\[u = {x^{x\cos x}}\]
$ \Rightarrow $\[\log u = \log ({x^{x\cos x}})\]
$ \Rightarrow $\[\log u = x\cos x\log x\]
Differentiating both sides with respect to x, we obtain
\[\dfrac{{d\left( {\log u} \right)}}{{dx}} = \dfrac{{d\left( {x\cos x\log x} \right)}}{{dx}}\]
After applying the product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$
$\dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}(x).\cos x.\log x + x\dfrac{d}{{dx}}(\cos x).\log x + x\cos x.\dfrac{d}{{dx}}(\log x)$
We know that $\dfrac{{d\left( x \right)}}{{dx}} = 1$, $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$and $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = u\left[ {1.\cos x.\log x + x.( - \sin x)\log x + x\cos x.\dfrac{1}{x}} \right]$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}(\cos x.\log x - x.\sin x.\log x + \cos x)$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right]$(equation 2)
$v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Applying both sides, we get
$\log v = \log \left( {\dfrac{{{x^2} + 1}}{{{x^2} - 1}}} \right)$
Applying the quotient rule in the above equation i.e. $\log \left( {\dfrac{x}{y}} \right) = \log x - \log y$we get
$\log v = \log ({x^2} + 1) - \log ({x^2} - 1)$
Differentiating both sides with respect to x, we obtain
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}} - \dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\]
By applying the chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function) in the above equation we get
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \left( {\dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} + 1} \right)}}{{dx}}} \right) - \left( {\dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} - 1} \right)}}{{dx}}} \right)\]
We know that $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$and $\dfrac{d}{{dx}}\left( {{x^2} \pm 1} \right) = 2x$
Therefore, $\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}} - \dfrac{{2x}}{{{x^2} - 1}}$
$\dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2x({x^2} - 1) - 2x({x^2} + 1)}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}} \times \left[ {\dfrac{{ - 4x}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{ - 4x}}{{{{({x^2} - 1)}^2}}}$(equation 3)
Now substituting the values form (2) and (3) in the equation 1 er get
$\dfrac{{dy}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$
Therefore, after differentiating this function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$with respect to x we get ${x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$.
Note: In the above solution we came across the term “function” which can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y. Examples of functions are logarithmic functions, bijective functions, trigonometric functions, binary functions, etc.
Complete step-by-step answer:
According to the given information we have function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Let$y = {x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
And let $u = {x^{x\cos x}}$ and $v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Now y = u + v
Differentiating both side with respect to x we get
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$ (equation 1)
\[u = {x^{x\cos x}}\]
$ \Rightarrow $\[\log u = \log ({x^{x\cos x}})\]
$ \Rightarrow $\[\log u = x\cos x\log x\]
Differentiating both sides with respect to x, we obtain
\[\dfrac{{d\left( {\log u} \right)}}{{dx}} = \dfrac{{d\left( {x\cos x\log x} \right)}}{{dx}}\]
After applying the product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$
$\dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}(x).\cos x.\log x + x\dfrac{d}{{dx}}(\cos x).\log x + x\cos x.\dfrac{d}{{dx}}(\log x)$
We know that $\dfrac{{d\left( x \right)}}{{dx}} = 1$, $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$and $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = u\left[ {1.\cos x.\log x + x.( - \sin x)\log x + x\cos x.\dfrac{1}{x}} \right]$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}(\cos x.\log x - x.\sin x.\log x + \cos x)$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right]$(equation 2)
$v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Applying both sides, we get
$\log v = \log \left( {\dfrac{{{x^2} + 1}}{{{x^2} - 1}}} \right)$
Applying the quotient rule in the above equation i.e. $\log \left( {\dfrac{x}{y}} \right) = \log x - \log y$we get
$\log v = \log ({x^2} + 1) - \log ({x^2} - 1)$
Differentiating both sides with respect to x, we obtain
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}} - \dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\]
By applying the chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function) in the above equation we get
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \left( {\dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} + 1} \right)}}{{dx}}} \right) - \left( {\dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} - 1} \right)}}{{dx}}} \right)\]
We know that $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$and $\dfrac{d}{{dx}}\left( {{x^2} \pm 1} \right) = 2x$
Therefore, $\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}} - \dfrac{{2x}}{{{x^2} - 1}}$
$\dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2x({x^2} - 1) - 2x({x^2} + 1)}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}} \times \left[ {\dfrac{{ - 4x}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{ - 4x}}{{{{({x^2} - 1)}^2}}}$(equation 3)
Now substituting the values form (2) and (3) in the equation 1 er get
$\dfrac{{dy}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$
Therefore, after differentiating this function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$with respect to x we get ${x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$.
Note: In the above solution we came across the term “function” which can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y. Examples of functions are logarithmic functions, bijective functions, trigonometric functions, binary functions, etc.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE