
Differentiate the function w.r.t. x
\[{x^x} - {2^{\sin \,\,x}}\]
Answer
484.5k+ views
Hint: Suppose the given value \[\left( {{x^x} - {2^{\sin \,\,x}}} \right)\] into two variables. Thereafter, we will solve separately, by using differentiation of the function with respect to \[{\text{x}}\].
Complete step by step solution:
Let\[y = {x^x} - {2^{\sin \,\,x}}\]
Also, let \[{x^x} = u\] and \[{2^{\sin x}}\,\, = v\]
\[\therefore \,\,\,\,y = u - v\]
Differentiating both sides with respect to\[{\text{x}}\].
\[ \Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} - \dfrac{{dv}}{{dx}}\]
First we will solve: \[u = {x^x}\]
Taking logarithm on both sides, we obtain
\[\log \,u = x{\text{ }}log{\text{ }}x\]
Differentiating both sides with respect to\[{\text{x}}\], we obtain
\[\dfrac{1}{u}\,\,\dfrac{{du}}{{dx}} = \left[ {\,\log x \times \dfrac{d}{{dx}}\left( x \right)\,\, + x \times \dfrac{d}{{dx}}\left( {\log x} \right)} \right]\]
\[ \Rightarrow \,\,\,\dfrac{{du}}{{dx}} = \,\,u\,\,\left[ {\log x \times 1\,\, + x \times \dfrac{1}{x}\dfrac{d}{{dx}}\left( x \right)} \right]\]
\[\dfrac{{du}}{{dx}} = {x^2}\left( {\log \,x + 1} \right)\] \[\;\left( {\because u = {x^2}} \right)\]
\[v = {2^{\sin \,\,x}}\]
Taking logarithm on both the sides with respect to \[{\text{x}}\], obtain
\[\log \,v{\text{ }} = {\text{ }}sin{\text{ }}x{\text{ }}log{\text{ }}2\]
Differentiating both sides with respect to x we obtain
\[\dfrac{1}{v}\,\,.\,\,\dfrac{{dv}}{{dx}}\,\, = \,\,\log \,2\,\,.\,\,\dfrac{d}{{dx}}\,\,\sin \,\,x\] \[\left( {\therefore \log 2} \right)\]is a constant term
\[ \Rightarrow \,\,\,\,\dfrac{{dv}}{{dx}}\,\, = \,\,v\,\,\log \,\,2\,\,\,\cos \,\,x\]
\[ \Rightarrow \,\,\,\,\dfrac{{dv}}{{dx}}\,\, = \,\,{2^{\sin \,\,x}}\,\,\cos \,x\,\,\,\log 2\]
Therefore, adding the values of $\dfrac{{du}}{{dx}}and\dfrac{{dv}}{{dx}}$, we will get
\[\therefore \,\,\,\,\,\dfrac{{dy}}{{dx}}\,\, = \,\,{x^x}\left( {1 + \log x} \right) - {2^{\sin x}}\cos x\,\,\log 2\]
Note: To differentiate something means to take the derivative of that value. Taking the derivative of a function is the same as finding the slope at any point, so differentiating is just finding the slope.
Complete step by step solution:
Let\[y = {x^x} - {2^{\sin \,\,x}}\]
Also, let \[{x^x} = u\] and \[{2^{\sin x}}\,\, = v\]
\[\therefore \,\,\,\,y = u - v\]
Differentiating both sides with respect to\[{\text{x}}\].
\[ \Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} - \dfrac{{dv}}{{dx}}\]
First we will solve: \[u = {x^x}\]
Taking logarithm on both sides, we obtain
\[\log \,u = x{\text{ }}log{\text{ }}x\]
Differentiating both sides with respect to\[{\text{x}}\], we obtain
\[\dfrac{1}{u}\,\,\dfrac{{du}}{{dx}} = \left[ {\,\log x \times \dfrac{d}{{dx}}\left( x \right)\,\, + x \times \dfrac{d}{{dx}}\left( {\log x} \right)} \right]\]
\[ \Rightarrow \,\,\,\dfrac{{du}}{{dx}} = \,\,u\,\,\left[ {\log x \times 1\,\, + x \times \dfrac{1}{x}\dfrac{d}{{dx}}\left( x \right)} \right]\]
\[\dfrac{{du}}{{dx}} = {x^2}\left( {\log \,x + 1} \right)\] \[\;\left( {\because u = {x^2}} \right)\]
\[v = {2^{\sin \,\,x}}\]
Taking logarithm on both the sides with respect to \[{\text{x}}\], obtain
\[\log \,v{\text{ }} = {\text{ }}sin{\text{ }}x{\text{ }}log{\text{ }}2\]
Differentiating both sides with respect to x we obtain
\[\dfrac{1}{v}\,\,.\,\,\dfrac{{dv}}{{dx}}\,\, = \,\,\log \,2\,\,.\,\,\dfrac{d}{{dx}}\,\,\sin \,\,x\] \[\left( {\therefore \log 2} \right)\]is a constant term
\[ \Rightarrow \,\,\,\,\dfrac{{dv}}{{dx}}\,\, = \,\,v\,\,\log \,\,2\,\,\,\cos \,\,x\]
\[ \Rightarrow \,\,\,\,\dfrac{{dv}}{{dx}}\,\, = \,\,{2^{\sin \,\,x}}\,\,\cos \,x\,\,\,\log 2\]
Therefore, adding the values of $\dfrac{{du}}{{dx}}and\dfrac{{dv}}{{dx}}$, we will get
\[\therefore \,\,\,\,\,\dfrac{{dy}}{{dx}}\,\, = \,\,{x^x}\left( {1 + \log x} \right) - {2^{\sin x}}\cos x\,\,\log 2\]
Note: To differentiate something means to take the derivative of that value. Taking the derivative of a function is the same as finding the slope at any point, so differentiating is just finding the slope.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
