Answer
Verified
495.6k+ views
Hint: In this problem we have to convert the product of three trigonometric function in the form of addition by applying log properties i.e log(axbxc) = log a +log b + log c .
Let, $y = \cos x.\cos 2x.\cos 3x$ . Since their terms are in multiplication which we don’t want and we can get rid of this by taking logarithmic both sides because we know that $\log (m.n) = \log (m) + \log (n)$ .
$\
y = \cos x.\cos 2x.\cos 3x \\
\Rightarrow \log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\ $
As the problem statement said, we’ll now differentiate both sides using chain rule and formula$\dfrac{{d(\log x)}}{{dx}} = \dfrac{1}{x}$
$\
\log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos x}} \times ( - \sin x) + \dfrac{1}{{\cos 2x}} \times ( - 2\sin 2x) + \dfrac{1}{{\cos 3x}} \times ( - 3\sin 3x) \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \dfrac{{\sin x}}{{\cos x}} - 2\dfrac{{\sin 2x}}{{\cos 2x}} - 3\dfrac{{\sin 3x}}{{\cos 3x}}] \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \tan x - 2\tan 2x - 3\tan 3x] \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x] \\
\ $
Hence, the required differentiation of the given function is $ - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x]$ .
Note: We can also use the formula
$\dfrac{{d({y_1}.{y_2})}}{{dx}}= {y_1}\dfrac{{d({y_2})}}{{dx}} + {y_2}\dfrac{{d({y_1})}}{{dx}}$. But it’ll make the solution lengthy because we have three functions in the multiplication and we need to use the formula two times. In differential calculus, we often use this hack of taking logs to get rid of long solutions.
Let, $y = \cos x.\cos 2x.\cos 3x$ . Since their terms are in multiplication which we don’t want and we can get rid of this by taking logarithmic both sides because we know that $\log (m.n) = \log (m) + \log (n)$ .
$\
y = \cos x.\cos 2x.\cos 3x \\
\Rightarrow \log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\ $
As the problem statement said, we’ll now differentiate both sides using chain rule and formula$\dfrac{{d(\log x)}}{{dx}} = \dfrac{1}{x}$
$\
\log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos x}} \times ( - \sin x) + \dfrac{1}{{\cos 2x}} \times ( - 2\sin 2x) + \dfrac{1}{{\cos 3x}} \times ( - 3\sin 3x) \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \dfrac{{\sin x}}{{\cos x}} - 2\dfrac{{\sin 2x}}{{\cos 2x}} - 3\dfrac{{\sin 3x}}{{\cos 3x}}] \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \tan x - 2\tan 2x - 3\tan 3x] \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x] \\
\ $
Hence, the required differentiation of the given function is $ - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x]$ .
Note: We can also use the formula
$\dfrac{{d({y_1}.{y_2})}}{{dx}}= {y_1}\dfrac{{d({y_2})}}{{dx}} + {y_2}\dfrac{{d({y_1})}}{{dx}}$. But it’ll make the solution lengthy because we have three functions in the multiplication and we need to use the formula two times. In differential calculus, we often use this hack of taking logs to get rid of long solutions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it