
Differentiate the following w.r.t.x:
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)\]
Answer
513.3k+ views
Hint: Make use of he standard formula which says \[\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\]
Complete step by step solution:
\[y = {\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)\]
Taking $\cos x$common in the numerator and denominator, we will get
\[y = {\tan ^{ - 1}}\left[ {\dfrac{{\cos x\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\cos x\left( {1 - \dfrac{{\sin x}}{{\cos x}}} \right)}}} \right]\,\,\,\]
As we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
$y = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)$
As we know that $\tan \dfrac{\pi }{4} = 1$
$\tan y = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan x} \right)}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}$ \[\left[ {\therefore \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\,\]
Then, by using the formula \[\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\,\]
$\tan y = \tan \left( {\dfrac{\pi }{4} + x} \right)$
Equating angles, when the trigonometric are the same
$y = \dfrac{\pi }{4} + x$
Now, by differentiating on both sides of the equation with respect to x, we will have.
$
\dfrac{{dy}}{{dx}} = 0 + 1\;\;\;\;\;\;\;\;\;\left[ {\therefore \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4}} \right) = 0} \right] \\
= 1\;\;\;\;\;\;\;\;\;\;\;\;\; \\
$
Note: The inverse trigonometric functions have suitably restricted domains. So, when solving these problems check if the domain of the function is asked/given and proceed accordingly
Complete step by step solution:
\[y = {\tan ^{ - 1}}\left( {\dfrac{{\cos x + \sin x}}{{\cos x - \sin x}}} \right)\]
Taking $\cos x$common in the numerator and denominator, we will get
\[y = {\tan ^{ - 1}}\left[ {\dfrac{{\cos x\left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\cos x\left( {1 - \dfrac{{\sin x}}{{\cos x}}} \right)}}} \right]\,\,\,\]
As we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
$y = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)$
As we know that $\tan \dfrac{\pi }{4} = 1$
$\tan y = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan x} \right)}}{{1 - \tan \dfrac{\pi }{4} \times \tan x}}$ \[\left[ {\therefore \dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\,\]
Then, by using the formula \[\left[ {\dfrac{{\tan A + \tan B}}{{1 - \tan A\,\,\tan B}} = \tan \left( {A + B} \right)} \right]\,\]
$\tan y = \tan \left( {\dfrac{\pi }{4} + x} \right)$
Equating angles, when the trigonometric are the same
$y = \dfrac{\pi }{4} + x$
Now, by differentiating on both sides of the equation with respect to x, we will have.
$
\dfrac{{dy}}{{dx}} = 0 + 1\;\;\;\;\;\;\;\;\;\left[ {\therefore \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4}} \right) = 0} \right] \\
= 1\;\;\;\;\;\;\;\;\;\;\;\;\; \\
$
Note: The inverse trigonometric functions have suitably restricted domains. So, when solving these problems check if the domain of the function is asked/given and proceed accordingly
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the technique used to separate the components class 11 chemistry CBSE
