
Differentiate the following function with respect to x
\[{x^x}\]
Answer
578.4k+ views
Hint: Differentiation of function means to compute the derivative of that function. A derivative is the rate at which output changes with respect to an input. We will suppose the given value as $\left( {y = {x^x}} \right)$.
Complete step by step solution:
$ y = {x^x} $
Taking log both sides, we will get
$ \log y = \log {x^x} $
We know that by the property of logarithm that $ {\text{log(m}}{{\text{)}}^{\text{a}}}{\text{ = a log m}} $
\[ \Rightarrow \log \,y = x{\text{ }}log{\text{ }}x\]
Differentiating this value with respect to x, we have
$
\dfrac{1}{y}\dfrac{d}{{dx}}y = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times \dfrac{d}{{dx}}x + \log x \times 1 \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times 1 + \log x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
$
\[\dfrac{1}{y}\,\,\dfrac{{dy}}{{dx}} = 1 + \log x\,\,\]
$ \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) $
\[\dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log \,x} \right)\] \[\left( {\because y = {x^x}} \right)\]
Note: In these types of questions students must take care while calculating the differentiation of \[log\,x\]. Usually students forget to calculate the derivative $ \left( {\dfrac{d}{{dx}}} \right) $ the value \[log\,x\] with respect to their function.
Complete step by step solution:
$ y = {x^x} $
Taking log both sides, we will get
$ \log y = \log {x^x} $
We know that by the property of logarithm that $ {\text{log(m}}{{\text{)}}^{\text{a}}}{\text{ = a log m}} $
\[ \Rightarrow \log \,y = x{\text{ }}log{\text{ }}x\]
Differentiating this value with respect to x, we have
$
\dfrac{1}{y}\dfrac{d}{{dx}}y = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times \dfrac{d}{{dx}}x + \log x \times 1 \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times 1 + \log x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
$
\[\dfrac{1}{y}\,\,\dfrac{{dy}}{{dx}} = 1 + \log x\,\,\]
$ \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) $
\[\dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log \,x} \right)\] \[\left( {\because y = {x^x}} \right)\]
Note: In these types of questions students must take care while calculating the differentiation of \[log\,x\]. Usually students forget to calculate the derivative $ \left( {\dfrac{d}{{dx}}} \right) $ the value \[log\,x\] with respect to their function.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

