
Differentiate the following function with respect to x
\[{x^x}\]
Answer
506.1k+ views
Hint: Differentiation of function means to compute the derivative of that function. A derivative is the rate at which output changes with respect to an input. We will suppose the given value as $\left( {y = {x^x}} \right)$.
Complete step by step solution:
$ y = {x^x} $
Taking log both sides, we will get
$ \log y = \log {x^x} $
We know that by the property of logarithm that $ {\text{log(m}}{{\text{)}}^{\text{a}}}{\text{ = a log m}} $
\[ \Rightarrow \log \,y = x{\text{ }}log{\text{ }}x\]
Differentiating this value with respect to x, we have
$
\dfrac{1}{y}\dfrac{d}{{dx}}y = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times \dfrac{d}{{dx}}x + \log x \times 1 \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times 1 + \log x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
$
\[\dfrac{1}{y}\,\,\dfrac{{dy}}{{dx}} = 1 + \log x\,\,\]
$ \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) $
\[\dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log \,x} \right)\] \[\left( {\because y = {x^x}} \right)\]
Note: In these types of questions students must take care while calculating the differentiation of \[log\,x\]. Usually students forget to calculate the derivative $ \left( {\dfrac{d}{{dx}}} \right) $ the value \[log\,x\] with respect to their function.
Complete step by step solution:
$ y = {x^x} $
Taking log both sides, we will get
$ \log y = \log {x^x} $
We know that by the property of logarithm that $ {\text{log(m}}{{\text{)}}^{\text{a}}}{\text{ = a log m}} $
\[ \Rightarrow \log \,y = x{\text{ }}log{\text{ }}x\]
Differentiating this value with respect to x, we have
$
\dfrac{1}{y}\dfrac{d}{{dx}}y = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times \dfrac{d}{{dx}}x + \log x \times 1 \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} \times 1 + \log x \\
\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
$
\[\dfrac{1}{y}\,\,\dfrac{{dy}}{{dx}} = 1 + \log x\,\,\]
$ \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) $
\[\dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log \,x} \right)\] \[\left( {\because y = {x^x}} \right)\]
Note: In these types of questions students must take care while calculating the differentiation of \[log\,x\]. Usually students forget to calculate the derivative $ \left( {\dfrac{d}{{dx}}} \right) $ the value \[log\,x\] with respect to their function.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
