Answer
Verified
423.3k+ views
Hint: In this problem, we find out the derivative using the chain rule of differentiation, which is $\dfrac{d}{dx}f\left( u\left( x \right) \right)=\dfrac{df}{du}\times \dfrac{du}{dx}$ . First, we differentiate ${{e}^{\cos x}}$ with respect to $\cos x$ and multiply the result with the derivative of $\cos x$ with respect to $x$ . By doing so, we arrive at the desired result.
Complete step by step solution:
The given equation we have is
$f\left( x \right)={{e}^{\cos x}}$
We can rewrite the above equation as
$\Rightarrow y={{e}^{\cos x}}$
Now for differentiation we apply chain rule for the right-hand part. According to the chain rule of differentiation: $\dfrac{d}{dx}f\left( u\left( x \right) \right)=\dfrac{df}{du}\times \dfrac{du}{dx}$
Here, the functions we have assumed are $f\left( u\left( x \right) \right)={{e}^{\cos x}}$ and $u\left( x \right)=\cos x$ .
Taking the main equation $y={{e}^{\cos x}}$ and differentiating both the sides, we get
$\dfrac{dy}{dx}=\dfrac{d\left\{ {{e}^{\cos x}} \right\}}{dx}$
Applying the chain rule of differentiation, we rewrite the above expression as,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( {{e}^{\cos x}} \right)}{d\left( \cos x \right)}\times \dfrac{d\left( \cos x \right)}{dx}$
Further carrying out the differentiation, we know that the derivative of exponential functions gives nothing different, but the function itself and that the derivative of $\cos x$ is $-\left( \sin x \right)$ . Implementing these in the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}={{e}^{\cos x}}\times \left( -\sin x \right)$
Simplifying the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}=-{{e}^{\cos x}}\sin x$
Therefore, we conclude that the derivative of the given equation $y={{e}^{\cos x}}$ is $-{{e}^{\cos x}}\sin x$ .
Note:
While applying the chain rule, we come across a lot of functions and a lot of derivatives. Thus, we are most likely to make mistakes here. So, we must be careful while dealing with the chain rule and must take care of the various along with the signs. The derivative of the given expression can also be found out by using the definition of differentiation. But, that method will become too tedious to carry out and thus it is not advisable to do so.
Complete step by step solution:
The given equation we have is
$f\left( x \right)={{e}^{\cos x}}$
We can rewrite the above equation as
$\Rightarrow y={{e}^{\cos x}}$
Now for differentiation we apply chain rule for the right-hand part. According to the chain rule of differentiation: $\dfrac{d}{dx}f\left( u\left( x \right) \right)=\dfrac{df}{du}\times \dfrac{du}{dx}$
Here, the functions we have assumed are $f\left( u\left( x \right) \right)={{e}^{\cos x}}$ and $u\left( x \right)=\cos x$ .
Taking the main equation $y={{e}^{\cos x}}$ and differentiating both the sides, we get
$\dfrac{dy}{dx}=\dfrac{d\left\{ {{e}^{\cos x}} \right\}}{dx}$
Applying the chain rule of differentiation, we rewrite the above expression as,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( {{e}^{\cos x}} \right)}{d\left( \cos x \right)}\times \dfrac{d\left( \cos x \right)}{dx}$
Further carrying out the differentiation, we know that the derivative of exponential functions gives nothing different, but the function itself and that the derivative of $\cos x$ is $-\left( \sin x \right)$ . Implementing these in the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}={{e}^{\cos x}}\times \left( -\sin x \right)$
Simplifying the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}=-{{e}^{\cos x}}\sin x$
Therefore, we conclude that the derivative of the given equation $y={{e}^{\cos x}}$ is $-{{e}^{\cos x}}\sin x$ .
Note:
While applying the chain rule, we come across a lot of functions and a lot of derivatives. Thus, we are most likely to make mistakes here. So, we must be careful while dealing with the chain rule and must take care of the various along with the signs. The derivative of the given expression can also be found out by using the definition of differentiation. But, that method will become too tedious to carry out and thus it is not advisable to do so.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE