
How many different acyclic isomers of ${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}$ on hydrogenation with ${{\text{H}}_{\text{2}}}{\text{/Ni}}$ gives the same 3-methyl pentane?
Answer
582.6k+ views
Hint:Compounds that have identical chemical formula but different structures are known as isomers of each other. Alkanes are obtained by the hydrogenation of alkenes.
Complete step by step answer:
The product obtained is 3-methyl pentane. In 3-methyl pentane, the parent compound is pentane which suggests that 3-methyl pentane is an alkane.
The structure of 3-methyl pentane is,
3-methyl pentane is obtained by hydrogenation of alkenes with ${{\text{H}}_{\text{2}}}$ in presence of nickel as a catalyst. All the alkenes are acyclic isomers of ${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}$.
The alkenes which are acyclic isomers of ${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}$ are as follows:
1.(S)-3-methylpent-1-ene
2.(R)-3-methylpent-1-ene
3.3-methylpentane
4.(Z)-3-methylpent-2-ene
5.(E)-3-methylpent-2-ene
The structures of the acyclic isomers are as follows:
Note: The hydrogenation of alkenes with ${{\text{H}}_{\text{2}}}$ in presence of nickel as a catalyst gives alkanes. The ${{\text{H}}_{\text{2}}}$ gets added across the carbon-carbon double bond resulting in formation of an alkane. Thus, hydrogenation of an alkene is an addition reaction.
The hydrogenation of alkynes with ${{\text{H}}_{\text{2}}}$ in presence of nickel as a catalyst gives alkenes. The ${{\text{H}}_{\text{2}}}$ gets added across the carbon-carbon triple bond resulting in formation of an alkene. Thus, hydrogenation of an alkyne is an addition reaction.
Complete step by step answer:
The product obtained is 3-methyl pentane. In 3-methyl pentane, the parent compound is pentane which suggests that 3-methyl pentane is an alkane.
The structure of 3-methyl pentane is,
3-methyl pentane is obtained by hydrogenation of alkenes with ${{\text{H}}_{\text{2}}}$ in presence of nickel as a catalyst. All the alkenes are acyclic isomers of ${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}$.
The alkenes which are acyclic isomers of ${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}$ are as follows:
1.(S)-3-methylpent-1-ene
2.(R)-3-methylpent-1-ene
3.3-methylpentane
4.(Z)-3-methylpent-2-ene
5.(E)-3-methylpent-2-ene
The structures of the acyclic isomers are as follows:
Note: The hydrogenation of alkenes with ${{\text{H}}_{\text{2}}}$ in presence of nickel as a catalyst gives alkanes. The ${{\text{H}}_{\text{2}}}$ gets added across the carbon-carbon double bond resulting in formation of an alkane. Thus, hydrogenation of an alkene is an addition reaction.
The hydrogenation of alkynes with ${{\text{H}}_{\text{2}}}$ in presence of nickel as a catalyst gives alkenes. The ${{\text{H}}_{\text{2}}}$ gets added across the carbon-carbon triple bond resulting in formation of an alkene. Thus, hydrogenation of an alkyne is an addition reaction.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

