
\[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}=?\]
Answer
609.6k+ views
Hint: First of all convert the given expression in terms of \[\sin \theta \] and \[\cos \theta \] by using \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta }\] and \[\text{cosec}\theta =\dfrac{1}{\sin \theta }\]. Then use \[\sin \left( 90-\theta \right)=\cos \theta \] and \[\cos \left( 90-\theta \right)=\sin \theta \] and substitute \[\theta ={{50}^{0}}\text{ and 4}{{\text{0}}^{o}}\] to get the final value of the expression.
Complete step-by-step answer:
Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].
Let us consider the expression given in the question
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]
By simplifying the above expression, we get
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]
By substituting, \[\theta ={{50}^{o}}\], we get,
\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]
By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]
Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]
By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{1}{1}+\dfrac{1}{1}\]
Or, \[E=1+1=2\]
Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.
Note: Students can also solve this question directly in this way.
Let the expression be
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
By substituting \[\theta ={{40}^{o}}\], we get,
\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].
By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
By cancelling the like terms, we get,
\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]
By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get
\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]
We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get
\[E=1+1=2\]
Hence, the value of the given expression is 2.
Complete step-by-step answer:
Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].
Let us consider the expression given in the question
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]
By simplifying the above expression, we get
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]
By substituting, \[\theta ={{50}^{o}}\], we get,
\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]
By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]
Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]
By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{1}{1}+\dfrac{1}{1}\]
Or, \[E=1+1=2\]
Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.
Note: Students can also solve this question directly in this way.
Let the expression be
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
By substituting \[\theta ={{40}^{o}}\], we get,
\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].
By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
By cancelling the like terms, we get,
\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]
By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get
\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]
We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get
\[E=1+1=2\]
Hence, the value of the given expression is 2.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

