# \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}=?\]

Answer

Verified

362.7k+ views

Hint: First of all convert the given expression in terms of \[\sin \theta \] and \[\cos \theta \] by using \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta }\] and \[\text{cosec}\theta =\dfrac{1}{\sin \theta }\]. Then use \[\sin \left( 90-\theta \right)=\cos \theta \] and \[\cos \left( 90-\theta \right)=\sin \theta \] and substitute \[\theta ={{50}^{0}}\text{ and 4}{{\text{0}}^{o}}\] to get the final value of the expression.

Complete step-by-step answer:

Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].

Let us consider the expression given in the question

\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]

We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].

By applying these in the above expression, we get,

\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]

We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,

\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]

By simplifying the above expression, we get

\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]

We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]

By substituting, \[\theta ={{50}^{o}}\], we get,

\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]

Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]

By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,

\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]

By cancelling the like terms, we get,

\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]

We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]

By substituting \[\theta ={{50}^{o}}\], we get,

\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]

Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]

By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,

\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]

By cancelling the like terms, we get,

\[E=\dfrac{1}{1}+\dfrac{1}{1}\]

Or, \[E=1+1=2\]

Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.

Note: Students can also solve this question directly in this way.

Let the expression be

\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]

We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]

By substituting \[\theta ={{40}^{o}}\], we get,

\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].

By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,

\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]

By cancelling the like terms, we get,

\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]

We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]

By substituting \[\theta ={{50}^{o}}\], we get,

\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]

By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get

\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]

We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get

\[E=1+1=2\]

Hence, the value of the given expression is 2.

Complete step-by-step answer:

Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].

Let us consider the expression given in the question

\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]

We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].

By applying these in the above expression, we get,

\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]

We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,

\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]

By simplifying the above expression, we get

\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]

We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]

By substituting, \[\theta ={{50}^{o}}\], we get,

\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]

Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]

By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,

\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]

By cancelling the like terms, we get,

\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]

We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]

By substituting \[\theta ={{50}^{o}}\], we get,

\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]

Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]

By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,

\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]

By cancelling the like terms, we get,

\[E=\dfrac{1}{1}+\dfrac{1}{1}\]

Or, \[E=1+1=2\]

Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.

Note: Students can also solve this question directly in this way.

Let the expression be

\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]

We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]

By substituting \[\theta ={{40}^{o}}\], we get,

\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].

By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,

\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]

By cancelling the like terms, we get,

\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]

We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]

By substituting \[\theta ={{50}^{o}}\], we get,

\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]

By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get

\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]

We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get

\[E=1+1=2\]

Hence, the value of the given expression is 2.

Last updated date: 25th Sep 2023

â€¢

Total views: 362.7k

â€¢

Views today: 7.62k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers