\[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}=?\]
Last updated date: 28th Mar 2023
•
Total views: 308.1k
•
Views today: 8.84k
Answer
308.1k+ views
Hint: First of all convert the given expression in terms of \[\sin \theta \] and \[\cos \theta \] by using \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta }\] and \[\text{cosec}\theta =\dfrac{1}{\sin \theta }\]. Then use \[\sin \left( 90-\theta \right)=\cos \theta \] and \[\cos \left( 90-\theta \right)=\sin \theta \] and substitute \[\theta ={{50}^{0}}\text{ and 4}{{\text{0}}^{o}}\] to get the final value of the expression.
Complete step-by-step answer:
Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].
Let us consider the expression given in the question
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]
By simplifying the above expression, we get
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]
By substituting, \[\theta ={{50}^{o}}\], we get,
\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]
By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]
Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]
By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{1}{1}+\dfrac{1}{1}\]
Or, \[E=1+1=2\]
Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.
Note: Students can also solve this question directly in this way.
Let the expression be
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
By substituting \[\theta ={{40}^{o}}\], we get,
\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].
By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
By cancelling the like terms, we get,
\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]
By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get
\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]
We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get
\[E=1+1=2\]
Hence, the value of the given expression is 2.
Complete step-by-step answer:
Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].
Let us consider the expression given in the question
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]
By simplifying the above expression, we get
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]
By substituting, \[\theta ={{50}^{o}}\], we get,
\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]
By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]
Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]
By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{1}{1}+\dfrac{1}{1}\]
Or, \[E=1+1=2\]
Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.
Note: Students can also solve this question directly in this way.
Let the expression be
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
By substituting \[\theta ={{40}^{o}}\], we get,
\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].
By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
By cancelling the like terms, we get,
\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]
By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get
\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]
We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get
\[E=1+1=2\]
Hence, the value of the given expression is 2.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
