Answer
Verified
494.4k+ views
Hint: First of all convert the given expression in terms of \[\sin \theta \] and \[\cos \theta \] by using \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta }\] and \[\text{cosec}\theta =\dfrac{1}{\sin \theta }\]. Then use \[\sin \left( 90-\theta \right)=\cos \theta \] and \[\cos \left( 90-\theta \right)=\sin \theta \] and substitute \[\theta ={{50}^{0}}\text{ and 4}{{\text{0}}^{o}}\] to get the final value of the expression.
Complete step-by-step answer:
Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].
Let us consider the expression given in the question
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]
By simplifying the above expression, we get
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]
By substituting, \[\theta ={{50}^{o}}\], we get,
\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]
By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]
Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]
By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{1}{1}+\dfrac{1}{1}\]
Or, \[E=1+1=2\]
Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.
Note: Students can also solve this question directly in this way.
Let the expression be
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
By substituting \[\theta ={{40}^{o}}\], we get,
\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].
By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
By cancelling the like terms, we get,
\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]
By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get
\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]
We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get
\[E=1+1=2\]
Hence, the value of the given expression is 2.
Complete step-by-step answer:
Here, we have to find the value of the expression, \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}\].
Let us consider the expression given in the question
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].
By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We also know that \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }\]. By applying these in the above expression, we get,
\[E=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}\]
By simplifying the above expression, we get
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We know that, \[\sin \left( 90-\theta \right)=\cos \theta \]
By substituting, \[\theta ={{50}^{o}}\], we get,
\[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
Or, \[\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)\]
By substituting \[\sin {{40}^{o}}=\cos {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}\]
We also know that \[\cos \left( {{90}^{o}}-\theta \right)=\sin \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}\]
Or, \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\]
By substituting \[\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)\] in the above expression, we get,
\[E=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}\]
By cancelling the like terms, we get,
\[E=\dfrac{1}{1}+\dfrac{1}{1}\]
Or, \[E=1+1=2\]
Hence, the value of the expression \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\] is equal to 2.
Note: Students can also solve this question directly in this way.
Let the expression be
\[E=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}\]
We know that \[\tan \left( {{90}^{o}}-\theta \right)=\cot \theta \] and \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
By substituting \[\theta ={{40}^{o}}\], we get,
\[\tan {{50}^{o}}=\cot {{40}^{o}}\] and \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\].
By substituting the value of \[\tan {{50}^{o}}\] and \[\sec {{50}^{o}}\] in the above expression, we get,
\[E=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
By cancelling the like terms, we get,
\[E=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}\]
We know that, \[\operatorname{cosec}\left( 90-\theta \right)=\sec \theta \]
By substituting \[\theta ={{50}^{o}}\], we get,
\[\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}\]
By substituting the value of \[\operatorname{cosec}{{40}^{o}}\] in the above expression, we get
\[E=1+\cos {{40}^{o}},\sec {{40}^{o}}\]
We know that \[\cos \theta .\sec \theta =1\]. By applying this in the above expression, we get
\[E=1+1=2\]
Hence, the value of the given expression is 2.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it