
\[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\] is equal to
(1) \[2{x^{\ln x - 1}}\ln x\]
(2) \[{x^{\ln x - 1}}\]
(3) \[\dfrac{2}{3}\left( {\ln x} \right)\]
(4) \[{x^{\ln x - 1}}.\ln x\]
Answer
475.8k+ views
Hint:
To solve \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\], first assume that \[y = {x^{\ln x}}\]. Perform the natural logarithm on both sides. This will give you \[\ln y = {\left( {\ln x} \right)^2}\]. Now differentiate this equation by using implicit differentiation on the LHS and chain rule on the RHS. You will obtain \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2{x^{\ln x - 1}}\ln x\].
Complete step by step solution:
Given: To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
The 4 options given are:
(1) \[2{x^{\ln x - 1}}\ln x\] (2) \[{x^{\ln x - 1}}\]
(3) \[\dfrac{2}{3}\left( {\ln x} \right)\] (4) \[{x^{\ln x - 1}}.\ln x\]
To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
First assume that \[y = {x^{\ln x}}\] … (i)
Then we need to evaluate \[\dfrac{{dy}}{{dx}}\]
Now apply the natural logarithmic function to both sides of the equation (i) to get.
\[\ln y = \ln \left( {{x^{\ln x}}} \right)\]
\[ \Rightarrow \ln y = \ln x.\ln x\] \[\left[ {\because \ln {a^b} = b\ln a} \right]\]
\[ \Rightarrow \ln y = {\left( {\ln x} \right)^2}\] … (ii)
Now differentiate equation (ii). Apply implicit differentiation on the LHS and chain rule on the RHS to get,
\[\dfrac{1}{y}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right)\left( {\dfrac{1}{x}} \right)\] … (iii)
\[
\Rightarrow \dfrac{1}{{{x^{\ln x}}}}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {{x^{\ln x}}} \right)2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 2{x^{\ln \left( x \right) - 1}}.\ln x \\
\]
The correct answer for \[\dfrac{d}{{dx}}{x^{\ln x}}\] is \[2{x^{\ln \left( x \right) - 1}}.\ln x\].
Note:
To solve this kind of question you must substitute a variable as the expression to be differentiated. Here we have assumed\[y = {x^{\ln x}}\].
You must know how to handle the formulas of natural logarithms\[\left( {\ln } \right)\]. You must know to differentiate \[\dfrac{d}{{dx}}\ln x\] to efficiently perform chain rule. Here, we have directly performed the chain rule in one step but you may break down each step of the chain reaction and perform it one by one.
For e.g. \[\dfrac{d}{{dx}}{\left( {\ln x} \right)^2}\]
Assume \[u = \ln x\]
and \[f = {u^2}\]
\[
\dfrac{d}{{dx}}{\left( {\ln x} \right)^2} = \dfrac{{df}}{{du}}.\dfrac{{du}}{{dx}} \\
= \dfrac{d}{{du}}{u^2}.\dfrac{d}{{dx}}.\ln x \\
= 2u.\dfrac{1}{x} \\
= 2\ln x.\dfrac{1}{x} \\
\]
To solve \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\], first assume that \[y = {x^{\ln x}}\]. Perform the natural logarithm on both sides. This will give you \[\ln y = {\left( {\ln x} \right)^2}\]. Now differentiate this equation by using implicit differentiation on the LHS and chain rule on the RHS. You will obtain \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2{x^{\ln x - 1}}\ln x\].
Complete step by step solution:
Given: To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
The 4 options given are:
(1) \[2{x^{\ln x - 1}}\ln x\] (2) \[{x^{\ln x - 1}}\]
(3) \[\dfrac{2}{3}\left( {\ln x} \right)\] (4) \[{x^{\ln x - 1}}.\ln x\]
To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
First assume that \[y = {x^{\ln x}}\] … (i)
Then we need to evaluate \[\dfrac{{dy}}{{dx}}\]
Now apply the natural logarithmic function to both sides of the equation (i) to get.
\[\ln y = \ln \left( {{x^{\ln x}}} \right)\]
\[ \Rightarrow \ln y = \ln x.\ln x\] \[\left[ {\because \ln {a^b} = b\ln a} \right]\]
\[ \Rightarrow \ln y = {\left( {\ln x} \right)^2}\] … (ii)
Now differentiate equation (ii). Apply implicit differentiation on the LHS and chain rule on the RHS to get,
\[\dfrac{1}{y}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right)\left( {\dfrac{1}{x}} \right)\] … (iii)
\[
\Rightarrow \dfrac{1}{{{x^{\ln x}}}}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {{x^{\ln x}}} \right)2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 2{x^{\ln \left( x \right) - 1}}.\ln x \\
\]
The correct answer for \[\dfrac{d}{{dx}}{x^{\ln x}}\] is \[2{x^{\ln \left( x \right) - 1}}.\ln x\].
Note:
To solve this kind of question you must substitute a variable as the expression to be differentiated. Here we have assumed\[y = {x^{\ln x}}\].
You must know how to handle the formulas of natural logarithms\[\left( {\ln } \right)\]. You must know to differentiate \[\dfrac{d}{{dx}}\ln x\] to efficiently perform chain rule. Here, we have directly performed the chain rule in one step but you may break down each step of the chain reaction and perform it one by one.
For e.g. \[\dfrac{d}{{dx}}{\left( {\ln x} \right)^2}\]
Assume \[u = \ln x\]
and \[f = {u^2}\]
\[
\dfrac{d}{{dx}}{\left( {\ln x} \right)^2} = \dfrac{{df}}{{du}}.\dfrac{{du}}{{dx}} \\
= \dfrac{d}{{du}}{u^2}.\dfrac{d}{{dx}}.\ln x \\
= 2u.\dfrac{1}{x} \\
= 2\ln x.\dfrac{1}{x} \\
\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
