
\[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\] is equal to
(1) \[2{x^{\ln x - 1}}\ln x\]
(2) \[{x^{\ln x - 1}}\]
(3) \[\dfrac{2}{3}\left( {\ln x} \right)\]
(4) \[{x^{\ln x - 1}}.\ln x\]
Answer
582.9k+ views
Hint:
To solve \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\], first assume that \[y = {x^{\ln x}}\]. Perform the natural logarithm on both sides. This will give you \[\ln y = {\left( {\ln x} \right)^2}\]. Now differentiate this equation by using implicit differentiation on the LHS and chain rule on the RHS. You will obtain \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2{x^{\ln x - 1}}\ln x\].
Complete step by step solution:
Given: To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
The 4 options given are:
(1) \[2{x^{\ln x - 1}}\ln x\] (2) \[{x^{\ln x - 1}}\]
(3) \[\dfrac{2}{3}\left( {\ln x} \right)\] (4) \[{x^{\ln x - 1}}.\ln x\]
To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
First assume that \[y = {x^{\ln x}}\] … (i)
Then we need to evaluate \[\dfrac{{dy}}{{dx}}\]
Now apply the natural logarithmic function to both sides of the equation (i) to get.
\[\ln y = \ln \left( {{x^{\ln x}}} \right)\]
\[ \Rightarrow \ln y = \ln x.\ln x\] \[\left[ {\because \ln {a^b} = b\ln a} \right]\]
\[ \Rightarrow \ln y = {\left( {\ln x} \right)^2}\] … (ii)
Now differentiate equation (ii). Apply implicit differentiation on the LHS and chain rule on the RHS to get,
\[\dfrac{1}{y}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right)\left( {\dfrac{1}{x}} \right)\] … (iii)
\[
\Rightarrow \dfrac{1}{{{x^{\ln x}}}}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {{x^{\ln x}}} \right)2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 2{x^{\ln \left( x \right) - 1}}.\ln x \\
\]
The correct answer for \[\dfrac{d}{{dx}}{x^{\ln x}}\] is \[2{x^{\ln \left( x \right) - 1}}.\ln x\].
Note:
To solve this kind of question you must substitute a variable as the expression to be differentiated. Here we have assumed\[y = {x^{\ln x}}\].
You must know how to handle the formulas of natural logarithms\[\left( {\ln } \right)\]. You must know to differentiate \[\dfrac{d}{{dx}}\ln x\] to efficiently perform chain rule. Here, we have directly performed the chain rule in one step but you may break down each step of the chain reaction and perform it one by one.
For e.g. \[\dfrac{d}{{dx}}{\left( {\ln x} \right)^2}\]
Assume \[u = \ln x\]
and \[f = {u^2}\]
\[
\dfrac{d}{{dx}}{\left( {\ln x} \right)^2} = \dfrac{{df}}{{du}}.\dfrac{{du}}{{dx}} \\
= \dfrac{d}{{du}}{u^2}.\dfrac{d}{{dx}}.\ln x \\
= 2u.\dfrac{1}{x} \\
= 2\ln x.\dfrac{1}{x} \\
\]
To solve \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\], first assume that \[y = {x^{\ln x}}\]. Perform the natural logarithm on both sides. This will give you \[\ln y = {\left( {\ln x} \right)^2}\]. Now differentiate this equation by using implicit differentiation on the LHS and chain rule on the RHS. You will obtain \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2{x^{\ln x - 1}}\ln x\].
Complete step by step solution:
Given: To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
The 4 options given are:
(1) \[2{x^{\ln x - 1}}\ln x\] (2) \[{x^{\ln x - 1}}\]
(3) \[\dfrac{2}{3}\left( {\ln x} \right)\] (4) \[{x^{\ln x - 1}}.\ln x\]
To calculate \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\]
First assume that \[y = {x^{\ln x}}\] … (i)
Then we need to evaluate \[\dfrac{{dy}}{{dx}}\]
Now apply the natural logarithmic function to both sides of the equation (i) to get.
\[\ln y = \ln \left( {{x^{\ln x}}} \right)\]
\[ \Rightarrow \ln y = \ln x.\ln x\] \[\left[ {\because \ln {a^b} = b\ln a} \right]\]
\[ \Rightarrow \ln y = {\left( {\ln x} \right)^2}\] … (ii)
Now differentiate equation (ii). Apply implicit differentiation on the LHS and chain rule on the RHS to get,
\[\dfrac{1}{y}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right)\left( {\dfrac{1}{x}} \right)\] … (iii)
\[
\Rightarrow \dfrac{1}{{{x^{\ln x}}}}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {{x^{\ln x}}} \right)2\left( {\ln x} \right){x^{ - 1}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 2{x^{\ln \left( x \right) - 1}}.\ln x \\
\]
The correct answer for \[\dfrac{d}{{dx}}{x^{\ln x}}\] is \[2{x^{\ln \left( x \right) - 1}}.\ln x\].
Note:
To solve this kind of question you must substitute a variable as the expression to be differentiated. Here we have assumed\[y = {x^{\ln x}}\].
You must know how to handle the formulas of natural logarithms\[\left( {\ln } \right)\]. You must know to differentiate \[\dfrac{d}{{dx}}\ln x\] to efficiently perform chain rule. Here, we have directly performed the chain rule in one step but you may break down each step of the chain reaction and perform it one by one.
For e.g. \[\dfrac{d}{{dx}}{\left( {\ln x} \right)^2}\]
Assume \[u = \ln x\]
and \[f = {u^2}\]
\[
\dfrac{d}{{dx}}{\left( {\ln x} \right)^2} = \dfrac{{df}}{{du}}.\dfrac{{du}}{{dx}} \\
= \dfrac{d}{{du}}{u^2}.\dfrac{d}{{dx}}.\ln x \\
= 2u.\dfrac{1}{x} \\
= 2\ln x.\dfrac{1}{x} \\
\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

