
How do you determine the value(s) of $k$ such that the system of linear equations has the indicated number of solutions: An infinite number of solutions for $4x + ky = 6\;and\;kx + y = - 3?$
Answer
534.3k+ views
Hint: First express the given equations in matrix form, then find the determinant of the matrix and then compare it to zero, because determinant of a matrix of linear equations equal zero proofs two lines are parallel. Then after getting the value(s) test for the consistency of the system, the value that satisfies the test will be the required solution.
Complete step by step solution:
In order to find the value(s) of $k$ such that the system of linear equation $4x + ky = 6\;and\;kx + y = - 3$ has infinite number of solutions, we will first express the equations in matrix form.
The given equations,
$4x + ky = 6\;and\;kx + y = - 3$
We can express it in matrix form as follows
$\left[ {\begin{array}{*{20}{c}}
4&k \\
k&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6 \\
{ - 3}
\end{array}} \right]$
Now, the given system of equation will have infinite solution if the determinant of the $2 \times 2$
matrix $\left[ {\begin{array}{*{20}{c}}
4&k \\
k&1
\end{array}} \right]$ is equal to zero.
$
\Rightarrow \left| {\begin{array}{*{20}{c}}
4&k \\
k&1
\end{array}} \right| = 0 \\
\Rightarrow (4 \times 1) - (k \times k) = 0 \\
\Rightarrow 4 - {k^2} = 0 \\
\Rightarrow {k^2} = 4 \\
\Rightarrow k = \pm 2 \\
$
So we get two values for $k,\;i.e.\; + 2\;{\text{and}}\; - 2$
Now we will test the consistency of the system of linear equations by substituting both the values in the original matrix equation one by one.
Testing for $k = + 2$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
2&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6 \\
{ - 3}
\end{array}} \right]$
Performing row operation and taking row $1$ with $2$ we will get
$ \Rightarrow {}_{{R_1} - > \dfrac{1}{2}{R_1}}\left[ {\begin{array}{*{20}{c}}
2&1 \\
2&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 3}
\end{array}} \right]$
And now subtracting row $1\;{\text{from}}\;2$
$ \Rightarrow {}_{{R_2} - > {R_2} - {R_1}}\left[ {\begin{array}{*{20}{c}}
2&1 \\
0&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 3}
\end{array}} \right]$
Hence the $2nd$ row says $0x + 0y = - 3 \Rightarrow 0 + 0 = - 3 \Rightarrow 0 = - 3$ which is not possible, that is the system is inconsistent with $k = + 2$ so it is not the solution.
Testing for $k = - 2$
$
\Rightarrow \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 2}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6 \\
{ - 3}
\end{array}} \right] \\
\Rightarrow {}_{{R_1} - > \dfrac{1}{2}{R_1}}\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 2}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 3}
\end{array}} \right] \\
\Rightarrow {}_{{R_2} - > {R_1} + {R_2}}\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
0&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
0
\end{array}} \right] \\
$
Since last line of matrix is all zero, hence it satisfies the condition
$\therefore k = - 2$ is the solution for the system of linear equations $4x + ky = 6\;and\;kx + y = - 3$ for infinite solutions.
Note: In a system of linear equation $a1x + b1y + c1 = 0\;{\text{and}}\;a2x + b2x + c2 = 0$ the system will have unique and consistent solution if $\dfrac{{a1}}{{a2}} \ne \dfrac{{b1}}{{b2}}$, will have infinitely many solution if $\dfrac{{a1}}{{a2}} = \dfrac{{b1}}{{b2}} = \dfrac{{c1}}{{c2}}$ and will be inconsistent and have no solution if $\dfrac{{a1}}{{a2}} = \dfrac{{b1}}{{b2}} \ne \dfrac{{c1}}{{c2}}$
Complete step by step solution:
In order to find the value(s) of $k$ such that the system of linear equation $4x + ky = 6\;and\;kx + y = - 3$ has infinite number of solutions, we will first express the equations in matrix form.
The given equations,
$4x + ky = 6\;and\;kx + y = - 3$
We can express it in matrix form as follows
$\left[ {\begin{array}{*{20}{c}}
4&k \\
k&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6 \\
{ - 3}
\end{array}} \right]$
Now, the given system of equation will have infinite solution if the determinant of the $2 \times 2$
matrix $\left[ {\begin{array}{*{20}{c}}
4&k \\
k&1
\end{array}} \right]$ is equal to zero.
$
\Rightarrow \left| {\begin{array}{*{20}{c}}
4&k \\
k&1
\end{array}} \right| = 0 \\
\Rightarrow (4 \times 1) - (k \times k) = 0 \\
\Rightarrow 4 - {k^2} = 0 \\
\Rightarrow {k^2} = 4 \\
\Rightarrow k = \pm 2 \\
$
So we get two values for $k,\;i.e.\; + 2\;{\text{and}}\; - 2$
Now we will test the consistency of the system of linear equations by substituting both the values in the original matrix equation one by one.
Testing for $k = + 2$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
4&2 \\
2&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6 \\
{ - 3}
\end{array}} \right]$
Performing row operation and taking row $1$ with $2$ we will get
$ \Rightarrow {}_{{R_1} - > \dfrac{1}{2}{R_1}}\left[ {\begin{array}{*{20}{c}}
2&1 \\
2&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 3}
\end{array}} \right]$
And now subtracting row $1\;{\text{from}}\;2$
$ \Rightarrow {}_{{R_2} - > {R_2} - {R_1}}\left[ {\begin{array}{*{20}{c}}
2&1 \\
0&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 3}
\end{array}} \right]$
Hence the $2nd$ row says $0x + 0y = - 3 \Rightarrow 0 + 0 = - 3 \Rightarrow 0 = - 3$ which is not possible, that is the system is inconsistent with $k = + 2$ so it is not the solution.
Testing for $k = - 2$
$
\Rightarrow \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 2}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6 \\
{ - 3}
\end{array}} \right] \\
\Rightarrow {}_{{R_1} - > \dfrac{1}{2}{R_1}}\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 2}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
{ - 3}
\end{array}} \right] \\
\Rightarrow {}_{{R_2} - > {R_1} + {R_2}}\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
0&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3 \\
0
\end{array}} \right] \\
$
Since last line of matrix is all zero, hence it satisfies the condition
$\therefore k = - 2$ is the solution for the system of linear equations $4x + ky = 6\;and\;kx + y = - 3$ for infinite solutions.
Note: In a system of linear equation $a1x + b1y + c1 = 0\;{\text{and}}\;a2x + b2x + c2 = 0$ the system will have unique and consistent solution if $\dfrac{{a1}}{{a2}} \ne \dfrac{{b1}}{{b2}}$, will have infinitely many solution if $\dfrac{{a1}}{{a2}} = \dfrac{{b1}}{{b2}} = \dfrac{{c1}}{{c2}}$ and will be inconsistent and have no solution if $\dfrac{{a1}}{{a2}} = \dfrac{{b1}}{{b2}} \ne \dfrac{{c1}}{{c2}}$
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

