
Determine the prime factorization of the following number:\[13915\]
Answer
514.2k+ views
Hint: To find the prime factors, start by dividing the number by the prime numbers and observe the remainders, if they are equal to 0 or not.
Start by dividing the number by the first prime number, which is $2$. If there is no remainder., it means you can divide evenly, then \[2\] is a factor of the number. Continue dividing by $2$ until you cannot divide evenly anymore. Write down how many \[2's\] you were able to divide the number by evenly. Now try dividing by the next prime factor, which is \[3\] . Ultimately the goal is to get to a quotient of \[1\].
\[13,915{\text{ }} \div {\text{ }}2{\text{ }} = {\text{ }}6,957.5\] - This has a remainder. Let's try another prime number.
\[13,915{\text{ }} \div {\text{ }}3{\text{ }} = {\text{ }}4,638.3333\] - This has a remainder. Let's try another prime number.
\[13,915{\text{ }} \div {\text{ }}5{\text{ }} = {\text{ }}2,783\] - There is no remainder. Hence, \[5\] is one of the factors.
\[2,783{\text{ }} \div {\text{ }}5{\text{ }} = {\text{ }}556.6\] - There is a remainder. We can't divide by \[5\] evenly anymore. Let's try the next prime number.
\[2,783{\text{ }} \div {\text{ }}7{\text{ }} = {\text{ }}397.5714\] - This has a remainder. \[7\] is not a factor.
\[2,783{\text{ }} \div {\text{ }}11{\text{ }} = {\text{ }}253\] - There is no remainder. Hence, \[11\] is one of the factors.
\[253{\text{ }} \div {\text{ }}11{\text{ }} = {\text{ }}23\] - There is no remainder. Hence, \[11\] is one of the factors.
\[23{\text{ }} \div {\text{ }}11{\text{ }} = {\text{ }}2.0909\] - There is a remainder. We can't divide by \[11\] evenly anymore. Let's try the next prime number
\[23{\text{ }} \div {\text{ }}13{\text{ }} = {\text{ }}1.7692\] - This has a remainder. \[13\] is not a factor.
\[23{\text{ }} \div {\text{ }}17{\text{ }} = {\text{ }}1.3529\] - This has a remainder. \[17\] is not a factor.
\[23{\text{ }} \div {\text{ }}19{\text{ }} = {\text{ }}1.2105\] - This has a remainder. \[19\] is not a factor.
\[23{\text{ }} \div {\text{ }}23{\text{ }} = {\text{ }}1\] - There is no remainder. Hence, \[23\] is one of the factors.
The prime factors of the given number are $5$, $11$, $23$.
As we can see, we can write $13915$ as $5 \times 11 \times 11 \times 23$. It can also be written in exponential form as ${5^1} \times {11^2} \times {23^1}$.
Note:
The prime factors of a number are all the prime numbers that, when multiplied together (while also taking in account the number of times they have occurred), equals the original number. You can find the prime factorization of a number by using a factor tree anddividing the number into smaller parts.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
