
Determine the points of maxima and minima of the function $f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$, where $b \geqslant 0$ is a constant.
$\left( a \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right)$
$\left( b \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right)$
$\left( c \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} + 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right)$
$\left( d \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} + 1} } \right)$
Answer
573.9k+ views
Hint: In this particular question to find the maxima and minima differentiate the given function w.r.t x and equate to solve and solve for x, then again differentiate the given function and calculate its value on previous calculated x value if we got positive than it is a minima and if we got negative than it is a maxima so use these concepts to reach the solution of the question.
Complete step by step answer:
Given function.
$f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$
Now differentiate this function w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0$
Now as we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, so use this property in the above equation we have,
$ \Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0$
$ \Rightarrow 1 - 8bx + 16{x^2} = 0$
$ \Rightarrow 16{x^2} - 8bx + 1 = 0$
Now this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, where a = 16, b = -8b, c = 1
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}$
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}$
$ \Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}$
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b $ \geqslant $ 1.
Now again differentiate the function w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)$
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right)\], as the differentiation of constant term is zero.
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)\]
Now when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b + \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b + \sqrt {{b^2} - 1} } \right) > 1$
\[ \Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = positive.
So when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ the given function is at minimum position.
Now when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b - \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b - \sqrt {{b^2} - 1} } \right) < 1$
\[ \Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = negative.
So when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ the given function is at maximum position.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ so differentiate the given function according to these properties as above.
Complete step by step answer:
Given function.
$f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$
Now differentiate this function w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0$
Now as we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, so use this property in the above equation we have,
$ \Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0$
$ \Rightarrow 1 - 8bx + 16{x^2} = 0$
$ \Rightarrow 16{x^2} - 8bx + 1 = 0$
Now this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, where a = 16, b = -8b, c = 1
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}$
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}$
$ \Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}$
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b $ \geqslant $ 1.
Now again differentiate the function w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)$
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right)\], as the differentiation of constant term is zero.
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)\]
Now when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b + \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b + \sqrt {{b^2} - 1} } \right) > 1$
\[ \Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = positive.
So when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ the given function is at minimum position.
Now when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b - \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b - \sqrt {{b^2} - 1} } \right) < 1$
\[ \Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = negative.
So when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ the given function is at maximum position.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ so differentiate the given function according to these properties as above.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

