Determine the points of maxima and minima of the function $f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$, where $b \geqslant 0$ is a constant.
$\left( a \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right)$
$\left( b \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right)$
$\left( c \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} + 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right)$
$\left( d \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} + 1} } \right)$
Answer
Verified
478.8k+ views
Hint: In this particular question to find the maxima and minima differentiate the given function w.r.t x and equate to solve and solve for x, then again differentiate the given function and calculate its value on previous calculated x value if we got positive than it is a minima and if we got negative than it is a maxima so use these concepts to reach the solution of the question.
Complete step by step answer:
Given function.
$f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$
Now differentiate this function w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0$
Now as we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, so use this property in the above equation we have,
$ \Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0$
$ \Rightarrow 1 - 8bx + 16{x^2} = 0$
$ \Rightarrow 16{x^2} - 8bx + 1 = 0$
Now this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, where a = 16, b = -8b, c = 1
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}$
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}$
$ \Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}$
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b $ \geqslant $ 1.
Now again differentiate the function w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)$
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right)\], as the differentiation of constant term is zero.
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)\]
Now when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b + \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b + \sqrt {{b^2} - 1} } \right) > 1$
\[ \Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = positive.
So when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ the given function is at minimum position.
Now when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b - \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b - \sqrt {{b^2} - 1} } \right) < 1$
\[ \Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = negative.
So when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ the given function is at maximum position.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ so differentiate the given function according to these properties as above.
Complete step by step answer:
Given function.
$f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$
Now differentiate this function w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0$
Now as we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, so use this property in the above equation we have,
$ \Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0$
$ \Rightarrow 1 - 8bx + 16{x^2} = 0$
$ \Rightarrow 16{x^2} - 8bx + 1 = 0$
Now this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, where a = 16, b = -8b, c = 1
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}$
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}$
$ \Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}$
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b $ \geqslant $ 1.
Now again differentiate the function w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)$
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right)\], as the differentiation of constant term is zero.
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)\]
Now when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b + \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b + \sqrt {{b^2} - 1} } \right) > 1$
\[ \Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = positive.
So when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ the given function is at minimum position.
Now when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b - \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b - \sqrt {{b^2} - 1} } \right) < 1$
\[ \Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = negative.
So when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ the given function is at maximum position.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ so differentiate the given function according to these properties as above.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE