Answer
Verified
447.9k+ views
Hint: In this particular question to find the maxima and minima differentiate the given function w.r.t x and equate to solve and solve for x, then again differentiate the given function and calculate its value on previous calculated x value if we got positive than it is a minima and if we got negative than it is a maxima so use these concepts to reach the solution of the question.
Complete step by step answer:
Given function.
$f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$
Now differentiate this function w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0$
Now as we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, so use this property in the above equation we have,
$ \Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0$
$ \Rightarrow 1 - 8bx + 16{x^2} = 0$
$ \Rightarrow 16{x^2} - 8bx + 1 = 0$
Now this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, where a = 16, b = -8b, c = 1
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}$
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}$
$ \Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}$
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b $ \geqslant $ 1.
Now again differentiate the function w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)$
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right)\], as the differentiation of constant term is zero.
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)\]
Now when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b + \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b + \sqrt {{b^2} - 1} } \right) > 1$
\[ \Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = positive.
So when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ the given function is at minimum position.
Now when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b - \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b - \sqrt {{b^2} - 1} } \right) < 1$
\[ \Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = negative.
So when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ the given function is at maximum position.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ so differentiate the given function according to these properties as above.
Complete step by step answer:
Given function.
$f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0$
Now differentiate this function w.r.t x and equate to zero we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0$
Now as we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$, so use this property in the above equation we have,
$ \Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0$
$ \Rightarrow 1 - 8bx + 16{x^2} = 0$
$ \Rightarrow 16{x^2} - 8bx + 1 = 0$
Now this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, where a = 16, b = -8b, c = 1
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}$
$ \Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}$
$ \Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}$
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b $ \geqslant $ 1.
Now again differentiate the function w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)$
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)\]
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right)\], as the differentiation of constant term is zero.
\[ \Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)\]
Now when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b + \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b + \sqrt {{b^2} - 1} } \right) > 1$
\[ \Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = positive.
So when, $x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4}$ the given function is at minimum position.
Now when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ so the value of f” (x) is
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2\]
Now simplify we have,
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2\]
As b $ \geqslant $ 1 so the value of $\left( {b - \sqrt {{b^2} - 1} } \right)$ when b = 1 is 1
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0\]
So at b = 1 function neither minima nor maxima.
So when, $1 < b < 2$, the value of $\left( {b - \sqrt {{b^2} - 1} } \right) < 1$
\[ \Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2\]
\[ \Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2\] = negative.
So when, $x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4}$ the given function is at maximum position.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ so differentiate the given function according to these properties as above.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths