
: Determine $\Delta {{\text{G}}^ \circ }$ for the following reaction:
${\text{CO}}\left( {\text{g}} \right) + \dfrac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right);{\text{ }}\Delta {{\text{H}}^ \circ } = - 282.84{\text{ kJ}}$
[Given: ${\text{S}}_{{\text{C}}{{\text{O}}_2}}^ \circ = 213.8{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$, ${\text{S}}_{{\text{CO}}}^ \circ = 197.9{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$, ${\text{S}}_{{{\text{O}}_2}}^ \circ = 205.8{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$]
(1)$ - 157.33{\text{ kJ}}$
(2)$ + 201.033{\text{ kJ}}$
(3)$ - 256.91{\text{ kJ}}$
(4)$ + 257.033{\text{ kJ}}$
Answer
552.3k+ views
Hint: The measure of randomness or disordered distribution is known as entropy. The randomness is always higher in a gaseous state. More the number of gaseous molecules higher is the entropy. To solve this we must know the expression that gives the relation between free energy, entropy and enthalpy.
Formula Used:$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = \Delta {{\text{S}}_{{\text{products}}}} - \Delta {{\text{S}}_{{\text{reactants}}}}$
$\Delta {{\text{G}}^ \circ } = \Delta {{\text{H}}^ \circ } - {\text{T}}\Delta {{\text{S}}^ \circ }$
Complete step-by-step answer:VWe are given the reaction as follows:
${\text{CO}}\left( {\text{g}} \right) + \dfrac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right)$
We know that the measure of randomness or disordered distribution is known as entropy.
We will first calculate the change in entropy of the reaction using the equation as follows:
$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = \Delta {{\text{S}}_{{\text{products}}}} - \Delta {{\text{S}}_{{\text{reactants}}}}$
Where, $\Delta {\text{S}}_{{\text{reaction}}}^ \circ $ is the standard change in entropy of the reaction.
We are given the values of standard entropies as ${\text{S}}_{{\text{C}}{{\text{O}}_2}}^ \circ = 213.8{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$, ${\text{S}}_{{\text{CO}}}^ \circ = 197.9{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$, ${\text{S}}_{{{\text{O}}_2}}^ \circ = 205.8{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$. Thus,
$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = {\text{213}}{\text{.8}} - \left( {197.9 + \dfrac{1}{2} \times 205.8} \right)$
$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = - 87{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$
Thus, the standard change in entropy of the reaction is $ - 87{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} = - 87 \times {10^{ - 3}}{\text{ kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$.
We know the expression that gives the relation between free energy, entropy and enthalpy is as follows:
$\Delta {{\text{G}}^ \circ } = \Delta {{\text{H}}^ \circ } - {\text{T}}\Delta {{\text{S}}^ \circ }$
Where, $\Delta {{\text{G}}^ \circ }$ is the standard change in Gibb’s free energy,
$\Delta {{\text{H}}^ \circ }$ is the standard change in enthalpy,
${\text{T}}$ is the temperature,
$\Delta {{\text{S}}^ \circ }$ is the standard change in entropy.
We are given the standard values. At standard condition, ${\text{T}} = {25^ \circ }{\text{C}} = 298{\text{ K}}$. We are given that $\Delta {{\text{H}}^ \circ } = - 282.84{\text{ kJ}}$. Thus,
$\Delta {{\text{G}}^ \circ } = - 282.84{\text{ kJ}} - \left[ {{\text{298 K}}\left( { - 87 \times {{10}^{ - 3}}{\text{ kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}} \right)} \right]$
$\Delta {{\text{G}}^ \circ } = - 256.914{\text{ kJ}}$
Thus, $\Delta {{\text{G}}^ \circ }$ for the given reaction is $ - 256.91{\text{ kJ}}$.
Thus, the correct option is (3) $ - 256.91{\text{ kJ}}$.
Note:: We know that if the free energy change is negative then the reaction is spontaneous. If the free energy change is positive then the reaction is non-spontaneous. Here, $\Delta {{\text{G}}^ \circ } = - 256.914{\text{ kJ}}$ which is a negative value. Thus, the given reaction is a spontaneous reaction.
Formula Used:$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = \Delta {{\text{S}}_{{\text{products}}}} - \Delta {{\text{S}}_{{\text{reactants}}}}$
$\Delta {{\text{G}}^ \circ } = \Delta {{\text{H}}^ \circ } - {\text{T}}\Delta {{\text{S}}^ \circ }$
Complete step-by-step answer:VWe are given the reaction as follows:
${\text{CO}}\left( {\text{g}} \right) + \dfrac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right)$
We know that the measure of randomness or disordered distribution is known as entropy.
We will first calculate the change in entropy of the reaction using the equation as follows:
$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = \Delta {{\text{S}}_{{\text{products}}}} - \Delta {{\text{S}}_{{\text{reactants}}}}$
Where, $\Delta {\text{S}}_{{\text{reaction}}}^ \circ $ is the standard change in entropy of the reaction.
We are given the values of standard entropies as ${\text{S}}_{{\text{C}}{{\text{O}}_2}}^ \circ = 213.8{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$, ${\text{S}}_{{\text{CO}}}^ \circ = 197.9{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$, ${\text{S}}_{{{\text{O}}_2}}^ \circ = 205.8{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$. Thus,
$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = {\text{213}}{\text{.8}} - \left( {197.9 + \dfrac{1}{2} \times 205.8} \right)$
$\Delta {\text{S}}_{{\text{reaction}}}^ \circ = - 87{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$
Thus, the standard change in entropy of the reaction is $ - 87{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} = - 87 \times {10^{ - 3}}{\text{ kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}$.
We know the expression that gives the relation between free energy, entropy and enthalpy is as follows:
$\Delta {{\text{G}}^ \circ } = \Delta {{\text{H}}^ \circ } - {\text{T}}\Delta {{\text{S}}^ \circ }$
Where, $\Delta {{\text{G}}^ \circ }$ is the standard change in Gibb’s free energy,
$\Delta {{\text{H}}^ \circ }$ is the standard change in enthalpy,
${\text{T}}$ is the temperature,
$\Delta {{\text{S}}^ \circ }$ is the standard change in entropy.
We are given the standard values. At standard condition, ${\text{T}} = {25^ \circ }{\text{C}} = 298{\text{ K}}$. We are given that $\Delta {{\text{H}}^ \circ } = - 282.84{\text{ kJ}}$. Thus,
$\Delta {{\text{G}}^ \circ } = - 282.84{\text{ kJ}} - \left[ {{\text{298 K}}\left( { - 87 \times {{10}^{ - 3}}{\text{ kJ }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}} \right)} \right]$
$\Delta {{\text{G}}^ \circ } = - 256.914{\text{ kJ}}$
Thus, $\Delta {{\text{G}}^ \circ }$ for the given reaction is $ - 256.91{\text{ kJ}}$.
Thus, the correct option is (3) $ - 256.91{\text{ kJ}}$.
Note:: We know that if the free energy change is negative then the reaction is spontaneous. If the free energy change is positive then the reaction is non-spontaneous. Here, $\Delta {{\text{G}}^ \circ } = - 256.914{\text{ kJ}}$ which is a negative value. Thus, the given reaction is a spontaneous reaction.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

