
What is the derivative of $-\sin \left( x \right)$ ?
Answer
521.7k+ views
Hint: To find the derivative of $-\sin \left( x \right)$ , we have to find the derivative of $\sin x$ and then multiply it with -1. We will first equate $f\left( x \right)=\sin x$ and find the derivative using the formula $f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . We will use $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ and $\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1$ and simplify further. Then, we will use the properties of limits and apply the limits. Finally, we will multiply the derivative with -1.
Complete step by step solution:
We have to find the derivative of $-\sin \left( x \right)$ . Let us first find the derivative of $\sin x$ and then multiply it with -1.
We know that derivative of a function $f\left( x \right)$ is given by
$f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Let us consider $f\left( x \right)=\sin x$ . Then the above formula becomes
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( x+h \right)-\sin x}{h}$
We know that $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . Let us use this formula in the above equation.
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \dfrac{1}{2}\left( x+h-x \right)\cos \dfrac{1}{2}\left( x+h+x \right)}{h}$
We can simplify the above equation to
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x+h}{2} \right)}{h}$
We can rewrite the angle of cos in the above expression as
$\begin{align}
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x}{2}+\dfrac{h}{2} \right)}{h} \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( x+\dfrac{h}{2} \right)}{h} \\
\end{align}$
We know that $\displaystyle \lim_{x\to a}f\left( x \right)\cdot g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\cdot \displaystyle \lim_{x\to a}g\left( x \right)$ . Hence, we can write the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)}{h}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We can rewrite the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We know that $\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1$ . Hence, the above equation becomes
$\begin{align}
& \Rightarrow f'\left( x \right)=1\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
\end{align}$
Let us apply the limit.
$\begin{align}
& \Rightarrow f'\left( x \right)=\cos \left( x+0 \right) \\
& \Rightarrow f'\left( x \right)=\cos x \\
\end{align}$
Now, let us multiply -1 with $f\left( x \right)$ .
$\begin{align}
& \Rightarrow f\left( x \right)\times -1=\sin x \\
& \Rightarrow f\left( x \right)=-\sin x \\
\end{align}$
We can write the derivative as
$\begin{align}
& \Rightarrow f'\left( x \right)\times -1=\cos x \\
& \Rightarrow f'\left( x \right)=-\cos x \\
\end{align}$
Hence, the derivative of $-\sin \left( x \right)$ is $-\cos x$
Note: Students must know the trigonometric properties and formulas to solve this problem. They must also know the formula of derivatives, the properties of limits and how to apply them. Students must be careful with the formula $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . The cos part has $a+b$ not $a-b$ . We can also find the derivative of $-\sin \left( x \right)$ in an alternate way.
We know that derivative of $\sin x$ , that is $\dfrac{d}{dx}\sin x=\cos x$ .
Now, we will multiply -1 on both the sides in the above formula.
$\begin{align}
& -1\times \dfrac{d}{dx}\sin x=\left( \cos x \right)\times -1 \\
& \Rightarrow \dfrac{d}{dx}\left( -\sin x \right)=-\cos x \\
\end{align}$
Complete step by step solution:
We have to find the derivative of $-\sin \left( x \right)$ . Let us first find the derivative of $\sin x$ and then multiply it with -1.
We know that derivative of a function $f\left( x \right)$ is given by
$f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Let us consider $f\left( x \right)=\sin x$ . Then the above formula becomes
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( x+h \right)-\sin x}{h}$
We know that $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . Let us use this formula in the above equation.
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \dfrac{1}{2}\left( x+h-x \right)\cos \dfrac{1}{2}\left( x+h+x \right)}{h}$
We can simplify the above equation to
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x+h}{2} \right)}{h}$
We can rewrite the angle of cos in the above expression as
$\begin{align}
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x}{2}+\dfrac{h}{2} \right)}{h} \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( x+\dfrac{h}{2} \right)}{h} \\
\end{align}$
We know that $\displaystyle \lim_{x\to a}f\left( x \right)\cdot g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\cdot \displaystyle \lim_{x\to a}g\left( x \right)$ . Hence, we can write the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)}{h}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We can rewrite the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We know that $\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1$ . Hence, the above equation becomes
$\begin{align}
& \Rightarrow f'\left( x \right)=1\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
\end{align}$
Let us apply the limit.
$\begin{align}
& \Rightarrow f'\left( x \right)=\cos \left( x+0 \right) \\
& \Rightarrow f'\left( x \right)=\cos x \\
\end{align}$
Now, let us multiply -1 with $f\left( x \right)$ .
$\begin{align}
& \Rightarrow f\left( x \right)\times -1=\sin x \\
& \Rightarrow f\left( x \right)=-\sin x \\
\end{align}$
We can write the derivative as
$\begin{align}
& \Rightarrow f'\left( x \right)\times -1=\cos x \\
& \Rightarrow f'\left( x \right)=-\cos x \\
\end{align}$
Hence, the derivative of $-\sin \left( x \right)$ is $-\cos x$
Note: Students must know the trigonometric properties and formulas to solve this problem. They must also know the formula of derivatives, the properties of limits and how to apply them. Students must be careful with the formula $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . The cos part has $a+b$ not $a-b$ . We can also find the derivative of $-\sin \left( x \right)$ in an alternate way.
We know that derivative of $\sin x$ , that is $\dfrac{d}{dx}\sin x=\cos x$ .
Now, we will multiply -1 on both the sides in the above formula.
$\begin{align}
& -1\times \dfrac{d}{dx}\sin x=\left( \cos x \right)\times -1 \\
& \Rightarrow \dfrac{d}{dx}\left( -\sin x \right)=-\cos x \\
\end{align}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

