
What is the derivative of $-\sin \left( x \right)$ ?
Answer
471.9k+ views
Hint: To find the derivative of $-\sin \left( x \right)$ , we have to find the derivative of $\sin x$ and then multiply it with -1. We will first equate $f\left( x \right)=\sin x$ and find the derivative using the formula $f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . We will use $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ and $\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1$ and simplify further. Then, we will use the properties of limits and apply the limits. Finally, we will multiply the derivative with -1.
Complete step by step solution:
We have to find the derivative of $-\sin \left( x \right)$ . Let us first find the derivative of $\sin x$ and then multiply it with -1.
We know that derivative of a function $f\left( x \right)$ is given by
$f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Let us consider $f\left( x \right)=\sin x$ . Then the above formula becomes
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( x+h \right)-\sin x}{h}$
We know that $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . Let us use this formula in the above equation.
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \dfrac{1}{2}\left( x+h-x \right)\cos \dfrac{1}{2}\left( x+h+x \right)}{h}$
We can simplify the above equation to
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x+h}{2} \right)}{h}$
We can rewrite the angle of cos in the above expression as
$\begin{align}
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x}{2}+\dfrac{h}{2} \right)}{h} \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( x+\dfrac{h}{2} \right)}{h} \\
\end{align}$
We know that $\displaystyle \lim_{x\to a}f\left( x \right)\cdot g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\cdot \displaystyle \lim_{x\to a}g\left( x \right)$ . Hence, we can write the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)}{h}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We can rewrite the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We know that $\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1$ . Hence, the above equation becomes
$\begin{align}
& \Rightarrow f'\left( x \right)=1\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
\end{align}$
Let us apply the limit.
$\begin{align}
& \Rightarrow f'\left( x \right)=\cos \left( x+0 \right) \\
& \Rightarrow f'\left( x \right)=\cos x \\
\end{align}$
Now, let us multiply -1 with $f\left( x \right)$ .
$\begin{align}
& \Rightarrow f\left( x \right)\times -1=\sin x \\
& \Rightarrow f\left( x \right)=-\sin x \\
\end{align}$
We can write the derivative as
$\begin{align}
& \Rightarrow f'\left( x \right)\times -1=\cos x \\
& \Rightarrow f'\left( x \right)=-\cos x \\
\end{align}$
Hence, the derivative of $-\sin \left( x \right)$ is $-\cos x$
Note: Students must know the trigonometric properties and formulas to solve this problem. They must also know the formula of derivatives, the properties of limits and how to apply them. Students must be careful with the formula $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . The cos part has $a+b$ not $a-b$ . We can also find the derivative of $-\sin \left( x \right)$ in an alternate way.
We know that derivative of $\sin x$ , that is $\dfrac{d}{dx}\sin x=\cos x$ .
Now, we will multiply -1 on both the sides in the above formula.
$\begin{align}
& -1\times \dfrac{d}{dx}\sin x=\left( \cos x \right)\times -1 \\
& \Rightarrow \dfrac{d}{dx}\left( -\sin x \right)=-\cos x \\
\end{align}$
Complete step by step solution:
We have to find the derivative of $-\sin \left( x \right)$ . Let us first find the derivative of $\sin x$ and then multiply it with -1.
We know that derivative of a function $f\left( x \right)$ is given by
$f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Let us consider $f\left( x \right)=\sin x$ . Then the above formula becomes
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( x+h \right)-\sin x}{h}$
We know that $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . Let us use this formula in the above equation.
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \dfrac{1}{2}\left( x+h-x \right)\cos \dfrac{1}{2}\left( x+h+x \right)}{h}$
We can simplify the above equation to
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x+h}{2} \right)}{h}$
We can rewrite the angle of cos in the above expression as
$\begin{align}
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2x}{2}+\dfrac{h}{2} \right)}{h} \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( x+\dfrac{h}{2} \right)}{h} \\
\end{align}$
We know that $\displaystyle \lim_{x\to a}f\left( x \right)\cdot g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\cdot \displaystyle \lim_{x\to a}g\left( x \right)$ . Hence, we can write the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{2\sin \left( \dfrac{h}{2} \right)}{h}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We can rewrite the above equation as
$\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right)$
We know that $\displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1$ . Hence, the above equation becomes
$\begin{align}
& \Rightarrow f'\left( x \right)=1\cdot \displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\cos \left( x+\dfrac{h}{2} \right) \\
\end{align}$
Let us apply the limit.
$\begin{align}
& \Rightarrow f'\left( x \right)=\cos \left( x+0 \right) \\
& \Rightarrow f'\left( x \right)=\cos x \\
\end{align}$
Now, let us multiply -1 with $f\left( x \right)$ .
$\begin{align}
& \Rightarrow f\left( x \right)\times -1=\sin x \\
& \Rightarrow f\left( x \right)=-\sin x \\
\end{align}$
We can write the derivative as
$\begin{align}
& \Rightarrow f'\left( x \right)\times -1=\cos x \\
& \Rightarrow f'\left( x \right)=-\cos x \\
\end{align}$
Hence, the derivative of $-\sin \left( x \right)$ is $-\cos x$
Note: Students must know the trigonometric properties and formulas to solve this problem. They must also know the formula of derivatives, the properties of limits and how to apply them. Students must be careful with the formula $\sin a-\sin b=2\sin \dfrac{1}{2}\left( a-b \right)\cos \dfrac{1}{2}\left( a+b \right)$ . The cos part has $a+b$ not $a-b$ . We can also find the derivative of $-\sin \left( x \right)$ in an alternate way.
We know that derivative of $\sin x$ , that is $\dfrac{d}{dx}\sin x=\cos x$ .
Now, we will multiply -1 on both the sides in the above formula.
$\begin{align}
& -1\times \dfrac{d}{dx}\sin x=\left( \cos x \right)\times -1 \\
& \Rightarrow \dfrac{d}{dx}\left( -\sin x \right)=-\cos x \\
\end{align}$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
