\[\Delta ABC\sim \Delta XYZ\]. The ratio of corresponding sides of the triangles AB : XY = 2 : 3 . If BC = 5 cm. Find the value of YZ.
Last updated date: 23rd Mar 2023
•
Total views: 305.7k
•
Views today: 2.83k
Answer
305.7k+ views
Hint: To solve the question, we have to apply the property of similar triangles to calculate the value of YZ.
Complete step-by-step Solution:
\[\Delta ABC\sim \Delta XYZ\] symbolises that the triangles ABC and XYZ are similar triangles, which implies that the ratio of all the corresponding side of the given triangles is equal.
AB, BC, CA of triangle ABC are corresponding sides of XY, YZ, ZX of triangle XYZ respectively.
\[\Rightarrow \dfrac{AB}{XY}=\dfrac{BC}{YZ}=\dfrac{CA}{ZX}\]
The given value of side BC of triangle ABC is equal to 5 cm.
The given ratio of side AB of triangle ABC to side XY of triangle XYZ is equal to 2 : 3
By substituting the given values in the above expression, we get
\[\dfrac{2}{3}=\dfrac{5}{YZ}=\dfrac{CA}{ZX}\]
By solving the first part of the expression \[\dfrac{2}{3}=\dfrac{5}{YZ}\] we get,
\[2YZ=5\times 3\]
\[YZ=\dfrac{15}{2}=7.5\] cm.
Thus, the value of YZ is equal to 7.5 cm.
Note: The possibility of mistake can be not applying the similar triangles property which is required to arrive at the solution. The other possibility of mistake can be misinterpreting the symbol of similarity to the symbol of congruence. The symbol for a similar triangle is one negation sign and the symbol for congruent triangle is two negation signs. The alternative method of solving the question can be by applying the direct formula for calculating \[YZ=\dfrac{XY}{AB}\times BC\]. Thus, the answer can be calculated quickly.
Complete step-by-step Solution:
\[\Delta ABC\sim \Delta XYZ\] symbolises that the triangles ABC and XYZ are similar triangles, which implies that the ratio of all the corresponding side of the given triangles is equal.
AB, BC, CA of triangle ABC are corresponding sides of XY, YZ, ZX of triangle XYZ respectively.
\[\Rightarrow \dfrac{AB}{XY}=\dfrac{BC}{YZ}=\dfrac{CA}{ZX}\]
The given value of side BC of triangle ABC is equal to 5 cm.
The given ratio of side AB of triangle ABC to side XY of triangle XYZ is equal to 2 : 3
By substituting the given values in the above expression, we get
\[\dfrac{2}{3}=\dfrac{5}{YZ}=\dfrac{CA}{ZX}\]
By solving the first part of the expression \[\dfrac{2}{3}=\dfrac{5}{YZ}\] we get,
\[2YZ=5\times 3\]
\[YZ=\dfrac{15}{2}=7.5\] cm.
Thus, the value of YZ is equal to 7.5 cm.
Note: The possibility of mistake can be not applying the similar triangles property which is required to arrive at the solution. The other possibility of mistake can be misinterpreting the symbol of similarity to the symbol of congruence. The symbol for a similar triangle is one negation sign and the symbol for congruent triangle is two negation signs. The alternative method of solving the question can be by applying the direct formula for calculating \[YZ=\dfrac{XY}{AB}\times BC\]. Thus, the answer can be calculated quickly.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
