
Define oxygen dissociation curve. Can you suggest any reason for its sigmoidal pattern?
Answer
552.6k+ views
Hint: Oxygen dissociation curve is an important tool which helps in understanding how our blood carries and releases oxygen. It describes the affinity of oxygen for hemoglobin. It describes how hemoglobin captures and releases oxygen molecules into the fluid that surrounds it.
Complete answer:
To solve this question, we must know about the oxygen dissociation curve and its pattern.
Oxygen dissociation curve is a curve in which the proportion of saturated haemoglobin is plotted on the vertical axis versus the oxygen tension which is plotted on the horizontal axis.
The function of haemoglobin is to carry oxygen in the blood. At tension 100mm of Hg or more, the haemoglobin is completely saturated.
At oxygen tension 50mm of Hg, the saturation declines slowly and the unloading of oxygen takes place.
When the oxygen tension is 40mm of Hg, it dissociates the oxy-hemoglobin complex which makes oxygen readily available to the cells.
The oxygen dissociation curve is sigmoidal in shape. The sigmoidal shape is because of the affinity of oxygen to haemoglobin. The affinity for oxygen increases with the subsequent binding of molecules. After the binding of the first oxygen molecule, it increases the affinity for the second molecule as a reason of which subsequent haemoglobin attracts more oxygen.
Note: Raised Temperature, pH, carbon dioxide concentration affects the oxygen-dissociation curve and shifts the curve towards right. These factors cause haemoglobin to give up oxygen more readily. Binding of carbon monoxide shifts the curve to the left.
Complete answer:
To solve this question, we must know about the oxygen dissociation curve and its pattern.
Oxygen dissociation curve is a curve in which the proportion of saturated haemoglobin is plotted on the vertical axis versus the oxygen tension which is plotted on the horizontal axis.
The function of haemoglobin is to carry oxygen in the blood. At tension 100mm of Hg or more, the haemoglobin is completely saturated.
At oxygen tension 50mm of Hg, the saturation declines slowly and the unloading of oxygen takes place.
When the oxygen tension is 40mm of Hg, it dissociates the oxy-hemoglobin complex which makes oxygen readily available to the cells.
The oxygen dissociation curve is sigmoidal in shape. The sigmoidal shape is because of the affinity of oxygen to haemoglobin. The affinity for oxygen increases with the subsequent binding of molecules. After the binding of the first oxygen molecule, it increases the affinity for the second molecule as a reason of which subsequent haemoglobin attracts more oxygen.
Note: Raised Temperature, pH, carbon dioxide concentration affects the oxygen-dissociation curve and shifts the curve towards right. These factors cause haemoglobin to give up oxygen more readily. Binding of carbon monoxide shifts the curve to the left.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

