Define a molecule. How many molecules are present in
1.\[9\] grams of water
2.\[17\] grams of ammonia
Last updated date: 23rd Mar 2023
•
Total views: 207k
•
Views today: 1.84k
Answer
207k+ views
Hint: An atom is considered as the smallest part of an element. We can say that it is a basic ingredient of a common matter. Atom is further divided into three parts i.e., electrons, protons and neutrons.
Complete answer:
Molecule: It is a group of two or more atoms chemically bonded together and forms the smallest basic unit of a compound which can participate in a chemical reaction. To find the number of molecules in any compound, we need to multiply the number of moles of that compound with the Avogadro’s constant.
Number of molecules \[ = \]number of moles \[ \times \,6.023 \times \,{10^{23}}\,\, - (i)\]
Number of moles: It is the ratio of given mass of the compound to its molecular mass. The expression to find number of moles is given below:
\[n = \dfrac{m}{M}\,\, - (ii)\]
Where, \[m\]is the given mass of the compound and \[M\]is the molar mass of the given compound.
Number of molecules in \[9\] grams of water.
Given mass of water molecule \[ = 9g\]
Molar mass of water molecule \[ = 18g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{9}{{18}} \Rightarrow 0.5\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 0.5 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 3.01 \times {10^{23}}\]
Hence, number of molecules in \[9\] grams of water \[ = 3.01 \times {10^{23}}\]molecules.
Number of molecules in \[17\] grams of ammonia.
Given mass of ammonia \[ = 17g\]
Molar mass of water molecule \[ = 17g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{{17}}{{17}} \Rightarrow 1\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 1 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 6.023 \times {10^{23}}\]
Hence, the number of molecules in \[17\] grams of ammonia \[ = 6.023 \times {10^{23}}\] molecules.
Note:
Avogadro’s number is the proportionality factor which gives a relation between the number of particles or molecules in a sample when a fixed amount of that sample is taken. Its SI unit is the reciprocal to that of mole.
Complete answer:
Molecule: It is a group of two or more atoms chemically bonded together and forms the smallest basic unit of a compound which can participate in a chemical reaction. To find the number of molecules in any compound, we need to multiply the number of moles of that compound with the Avogadro’s constant.
Number of molecules \[ = \]number of moles \[ \times \,6.023 \times \,{10^{23}}\,\, - (i)\]
Number of moles: It is the ratio of given mass of the compound to its molecular mass. The expression to find number of moles is given below:
\[n = \dfrac{m}{M}\,\, - (ii)\]
Where, \[m\]is the given mass of the compound and \[M\]is the molar mass of the given compound.
Number of molecules in \[9\] grams of water.
Given mass of water molecule \[ = 9g\]
Molar mass of water molecule \[ = 18g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{9}{{18}} \Rightarrow 0.5\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 0.5 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 3.01 \times {10^{23}}\]
Hence, number of molecules in \[9\] grams of water \[ = 3.01 \times {10^{23}}\]molecules.
Number of molecules in \[17\] grams of ammonia.
Given mass of ammonia \[ = 17g\]
Molar mass of water molecule \[ = 17g\]
Using equation \[(ii)\] for calculating number of moles of water:
Number of moles \[n = \dfrac{{17}}{{17}} \Rightarrow 1\]
Using equation \[(i)\] for calculating the number of molecules of water
Number of molecules \[ = n \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 1 \times 6.023 \times {10^{23}}\]
\[ \Rightarrow 6.023 \times {10^{23}}\]
Hence, the number of molecules in \[17\] grams of ammonia \[ = 6.023 \times {10^{23}}\] molecules.
Note:
Avogadro’s number is the proportionality factor which gives a relation between the number of particles or molecules in a sample when a fixed amount of that sample is taken. Its SI unit is the reciprocal to that of mole.
Recently Updated Pages
In India on the occasion of marriages the fireworks class 12 chemistry JEE_Main

The alkaline earth metals Ba Sr Ca and Mg may be arranged class 12 chemistry JEE_Main

Which of the following has the highest electrode potential class 12 chemistry JEE_Main

Which of the following is a true peroxide A rmSrmOrm2 class 12 chemistry JEE_Main

Which element possesses the biggest atomic radii A class 11 chemistry JEE_Main

Phosphine is obtained from the following ore A Calcium class 12 chemistry JEE_Main
