Answer
Verified
419.1k+ views
Hint:The de Broglie wavelength of a particle indicates the length scale at which wave-like properties are important for that particle. Therefore, if we look at every moving particle whether it is microscopic or macroscopic it will have a wavelength. In cases of macroscopic objects, the wave nature of matter can be detected or it is visible.
Complete step-by-step solution:The concept that matter behaves like a wave was proposed by Louis de Broglie in 1924. It is also referred to as the de Broglie hypothesis. Matter waves are referred to as de Broglie waves. De Broglie equation states that a matter can act as waves much like light and radiation which also behave as waves and particles. The equation further explains that a beam of electrons can also be diffracted just like a beam of light.
De Broglie wavelength is given by the formula; $\lambda = \dfrac{h}{{mv}}$
From the question the data filtered out is: $mass(m) = 0.06kg$,$velocity(v) = 10m/s$ and
h = $6.63 \times {10^{ - 34}}Js$. Substituting the values of mass, velocity and Planck’s constant in the formula for de-Broglie wavelength we get:
$\lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{0.06 \times 10}} = 1.1 \times {10^{ - 33}}m$
Hence the approx. value of de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 meters per second is $\lambda = {10^{ - 33}}m$.
Hence the correct option is (B).
Note:Electron has the least mass, so its wavelength is maximum. The significance of de Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Complete step-by-step solution:The concept that matter behaves like a wave was proposed by Louis de Broglie in 1924. It is also referred to as the de Broglie hypothesis. Matter waves are referred to as de Broglie waves. De Broglie equation states that a matter can act as waves much like light and radiation which also behave as waves and particles. The equation further explains that a beam of electrons can also be diffracted just like a beam of light.
De Broglie wavelength is given by the formula; $\lambda = \dfrac{h}{{mv}}$
From the question the data filtered out is: $mass(m) = 0.06kg$,$velocity(v) = 10m/s$ and
h = $6.63 \times {10^{ - 34}}Js$. Substituting the values of mass, velocity and Planck’s constant in the formula for de-Broglie wavelength we get:
$\lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{0.06 \times 10}} = 1.1 \times {10^{ - 33}}m$
Hence the approx. value of de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 meters per second is $\lambda = {10^{ - 33}}m$.
Hence the correct option is (B).
Note:Electron has the least mass, so its wavelength is maximum. The significance of de Broglie relation is that it is more useful to microscopic, fundamental particles like electrons.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE