
$\cos 2\theta + 2\cos \theta $ is always?
$A{\text{.}}$ Greater than $\frac{{ - 3}}{2}$
$B.$ Less than or equal to $\frac{3}{2}$
${\text{C}}{\text{.}}$ Greater than or equal to $\frac{{ - 3}}{2}$ and less than or equal to 3
${\text{D}}{\text{.}}$ None of the above
Answer
622.8k+ views
Hint:-Here, we go through the formula $\cos 2\theta = 2{\cos ^2}\theta - 1$ we have to make $2\theta $ in terms of $\theta $. And then by applying its range we get the extreme values or minimum values.
Given,
$\cos 2\theta + 2\cos \theta $
$ \Rightarrow \cos 2\theta + 2\cos \theta = 2{\cos ^2}\theta - 1 + 2\cos \theta $
Here we use the formula $\cos 2\theta = 2{\cos ^2}\theta - 1$
We can rewrite above question as following:
$ \Rightarrow \cos 2\theta + 2\cos \theta = 2{\left( {\cos \theta + \frac{1}{2}} \right)^2} - \frac{3}{2}$
Now, we know that the square of every number is greater than or equal to zero.
So, ${\text{2}}{\left( {\cos \theta + \frac{1}{2}} \right)^2} \geqslant 0$ for all $\theta $.
$\therefore 2{\left( {\cos \theta + \frac{1}{2}} \right)^2} - \frac{3}{2} \geqslant \frac{{ - 3}}{2}$ For all $\theta $.
$ \Rightarrow {\text{cos2}}\theta {\text{ + 2cos}}\theta \geqslant \frac{{ - 3}}{2}$ For all $\theta $.
And we can clearly see maximum value is $3$ when $\theta {\text{ = }}{{\text{0}}^0}$
Hence, option C is the correct answer.
Note: - when you got questions regarding maximum or minimum value. Then you have to proceed after making a square of terms and then after checking at extreme values.
Given,
$\cos 2\theta + 2\cos \theta $
$ \Rightarrow \cos 2\theta + 2\cos \theta = 2{\cos ^2}\theta - 1 + 2\cos \theta $
Here we use the formula $\cos 2\theta = 2{\cos ^2}\theta - 1$
We can rewrite above question as following:
$ \Rightarrow \cos 2\theta + 2\cos \theta = 2{\left( {\cos \theta + \frac{1}{2}} \right)^2} - \frac{3}{2}$
Now, we know that the square of every number is greater than or equal to zero.
So, ${\text{2}}{\left( {\cos \theta + \frac{1}{2}} \right)^2} \geqslant 0$ for all $\theta $.
$\therefore 2{\left( {\cos \theta + \frac{1}{2}} \right)^2} - \frac{3}{2} \geqslant \frac{{ - 3}}{2}$ For all $\theta $.
$ \Rightarrow {\text{cos2}}\theta {\text{ + 2cos}}\theta \geqslant \frac{{ - 3}}{2}$ For all $\theta $.
And we can clearly see maximum value is $3$ when $\theta {\text{ = }}{{\text{0}}^0}$
Hence, option C is the correct answer.
Note: - when you got questions regarding maximum or minimum value. Then you have to proceed after making a square of terms and then after checking at extreme values.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

