Answer
Verified
492.6k+ views
Hint- In this problem statement we have to convert the given recurring decimal to a fraction. First let’s talk about a recurring decimal. A recurring decimal also known as a repeating decimal basically refers to a number whose digits repeats till infinite times after a regular interval of time. So in order to convert it into fraction simply consider it equal to a variable and proceed, this will help to reach the answer.
Complete step-by-step answer:
Now we have to convert recurring decimal $0.\overline {35} $ into fraction.
Let x= $0.\overline {35} $…………. (1)
Multiplying with 100 both the side of equation (1) we get,
100x=$35.\overline {35} $…………… (2)
Now we can write $35.\overline {35} = 35 + 0.\overline {35} $
So equation (2) gets changed to
$100x = 35 + 0.\overline {35} $
Now using equation (1) we get,
$ \Rightarrow 100x = 35 + x$
On simplifying further we get,
$\begin{gathered}
99x = 35 \\
\Rightarrow x = \dfrac{{35}}{{99}} \\
\end{gathered} $
Hence the fraction conversion of $0.\overline {35} $ is $\dfrac{{35}}{{99}}$.
Note – Whenever we face such types of problems the key point is to simplify the fraction conversion for the given recurring number as a variable, then proper simplification of this equation will help you get on the right track to solve for that variable, this will give the fraction conversion for the recurring number.
Complete step-by-step answer:
Now we have to convert recurring decimal $0.\overline {35} $ into fraction.
Let x= $0.\overline {35} $…………. (1)
Multiplying with 100 both the side of equation (1) we get,
100x=$35.\overline {35} $…………… (2)
Now we can write $35.\overline {35} = 35 + 0.\overline {35} $
So equation (2) gets changed to
$100x = 35 + 0.\overline {35} $
Now using equation (1) we get,
$ \Rightarrow 100x = 35 + x$
On simplifying further we get,
$\begin{gathered}
99x = 35 \\
\Rightarrow x = \dfrac{{35}}{{99}} \\
\end{gathered} $
Hence the fraction conversion of $0.\overline {35} $ is $\dfrac{{35}}{{99}}$.
Note – Whenever we face such types of problems the key point is to simplify the fraction conversion for the given recurring number as a variable, then proper simplification of this equation will help you get on the right track to solve for that variable, this will give the fraction conversion for the recurring number.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE