
How do you convert \[0.93\] (93 repeating) to a fraction?
Answer
541.8k+ views
Hint:Given number here is a decimal number with two decimal places. Now we are asked to find the fraction form of this decimal number. But since the digits after decimal are repeating we can’t remove the decimal directly from the given number. For that we will just convert the number upto some extent to fraction form. Then to obtain the fraction form we need numbers that can be converted into fraction. So we will subtract the numbers given from its same form but having value greater than its own.
Complete step by step answer:
Given that \[0.93\] is the number given with 93 repeating forms.
Repetition means we can write the number as \[0.93939393....\]
Let the number so given is \[x = 0.\bar 9\bar 3\]
Then if we multiply both sides by 100 we get,
\[100x = 93.\bar 9\bar 3\]
Now we will find the difference between these,
\[100x - x = 93.\bar 9\bar 3 - 0.\bar 9\bar 3\]
Taking the difference,
\[99x = 93\]
Taking 99 on other side we get the fraction as,
\[x = \dfrac{{93}}{{99}}\]
Now simplifying this ratio, we will divide both the numbers by 3
\[x = \dfrac{{31}}{{33}}\]
Thus \[x = 0.\bar 9\bar 3 = \dfrac{{31}}{{33}}\]
This is our final answer.
Note: Here note that we cannot find the fraction as we do it normally. That means just by multiplying the number by 100 or other power of 10, because here the numbers after decimal are in repetition pattern. That cannot be converted into fraction as \[\dfrac{{93.\bar 9\bar 3}}{{100}}\]. So we should solve this in the way mentioned above if the numbers are repeating.
Complete step by step answer:
Given that \[0.93\] is the number given with 93 repeating forms.
Repetition means we can write the number as \[0.93939393....\]
Let the number so given is \[x = 0.\bar 9\bar 3\]
Then if we multiply both sides by 100 we get,
\[100x = 93.\bar 9\bar 3\]
Now we will find the difference between these,
\[100x - x = 93.\bar 9\bar 3 - 0.\bar 9\bar 3\]
Taking the difference,
\[99x = 93\]
Taking 99 on other side we get the fraction as,
\[x = \dfrac{{93}}{{99}}\]
Now simplifying this ratio, we will divide both the numbers by 3
\[x = \dfrac{{31}}{{33}}\]
Thus \[x = 0.\bar 9\bar 3 = \dfrac{{31}}{{33}}\]
This is our final answer.
Note: Here note that we cannot find the fraction as we do it normally. That means just by multiplying the number by 100 or other power of 10, because here the numbers after decimal are in repetition pattern. That cannot be converted into fraction as \[\dfrac{{93.\bar 9\bar 3}}{{100}}\]. So we should solve this in the way mentioned above if the numbers are repeating.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

