
How do you convert $0.23\bar 4$ (with $4$ repeating) as a fraction
Answer
539.4k+ views
Hint: In this question, we need to convert $0.23\bar 4$ (with $4$ repeating) into fraction. Here, we will consider $0.23\bar 4$ as x. So, to bring the repeating entity immediately after the decimal point, we multiply and divide the given decimal $0.23\bar 4$ by $100$. Then, as there is only $1$ digit being repeated. So, we multiply and divide the decimal by $10$.
Complete step-by-step solution:
In this question, we need to convert $0.23\bar 4$ to a fraction.
Let x be that fraction.
Here, consider the given value as $x = 0.23\bar 4$.
Now, let us multiply and divide $0.23\bar 4$ by $100$, we have,
$x = 0.23\bar 4 \times \dfrac{{100}}{{100}}$
Then, $100x = 0.23\bar 4 \times 100$
$ \Rightarrow 100x = 23.\bar 4$
Hence, $100x = 23.4444....$
Let us consider this as the equation $\left( 1 \right)$.
Now, let us multiply and divide $23.\bar 4$ by $10$, we have,
$100x = 23.\bar 4 \times \left( {\dfrac{{10}}{{10}}} \right)$
Then, $1000x = 23.\bar 4 \times 10$
$ \Rightarrow 1000x = 234.\bar 4$
Hence, $1000x = 234.\bar 4$
Let us consider this as equation \[\left( 2 \right)\].
Now, we will subtract equation $\left( 1 \right)$ from equation \[\left( 2 \right)\].
Therefore, we have,
$1000x - 100x = \left( {234.\bar 4 - 23.\bar 4} \right)$
Hence, $900x = \left( {234.4444.... - 23.4444.....} \right)$
$ \Rightarrow 900x = 211$
\[ \Rightarrow x = \dfrac{{211}}{{900}}\]
Therefore, \[x = \dfrac{{211}}{{900}}\]
Hence, the converted value of $0.23\bar 4$ to a fraction is \[\left( {\dfrac{{211}}{{900}}} \right)\].
Note: In this question it is important to note that, here we have multiplied and divided $0.23\bar 4$ firstly by $100$ and then by $10$ respectively, then subtracted both the equations to determine the value of x as in this question we have a repetition of a repetition of $4$ in $0.23\bar 4$. The scenario may be different in each question depending on the situation as the decimal may have more number of digits as its repeating entity.
Complete step-by-step solution:
In this question, we need to convert $0.23\bar 4$ to a fraction.
Let x be that fraction.
Here, consider the given value as $x = 0.23\bar 4$.
Now, let us multiply and divide $0.23\bar 4$ by $100$, we have,
$x = 0.23\bar 4 \times \dfrac{{100}}{{100}}$
Then, $100x = 0.23\bar 4 \times 100$
$ \Rightarrow 100x = 23.\bar 4$
Hence, $100x = 23.4444....$
Let us consider this as the equation $\left( 1 \right)$.
Now, let us multiply and divide $23.\bar 4$ by $10$, we have,
$100x = 23.\bar 4 \times \left( {\dfrac{{10}}{{10}}} \right)$
Then, $1000x = 23.\bar 4 \times 10$
$ \Rightarrow 1000x = 234.\bar 4$
Hence, $1000x = 234.\bar 4$
Let us consider this as equation \[\left( 2 \right)\].
Now, we will subtract equation $\left( 1 \right)$ from equation \[\left( 2 \right)\].
Therefore, we have,
$1000x - 100x = \left( {234.\bar 4 - 23.\bar 4} \right)$
Hence, $900x = \left( {234.4444.... - 23.4444.....} \right)$
$ \Rightarrow 900x = 211$
\[ \Rightarrow x = \dfrac{{211}}{{900}}\]
Therefore, \[x = \dfrac{{211}}{{900}}\]
Hence, the converted value of $0.23\bar 4$ to a fraction is \[\left( {\dfrac{{211}}{{900}}} \right)\].
Note: In this question it is important to note that, here we have multiplied and divided $0.23\bar 4$ firstly by $100$ and then by $10$ respectively, then subtracted both the equations to determine the value of x as in this question we have a repetition of a repetition of $4$ in $0.23\bar 4$. The scenario may be different in each question depending on the situation as the decimal may have more number of digits as its repeating entity.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

