
How do you convert $0.23\bar 4$ (with $4$ repeating) as a fraction
Answer
468k+ views
Hint: In this question, we need to convert $0.23\bar 4$ (with $4$ repeating) into fraction. Here, we will consider $0.23\bar 4$ as x. So, to bring the repeating entity immediately after the decimal point, we multiply and divide the given decimal $0.23\bar 4$ by $100$. Then, as there is only $1$ digit being repeated. So, we multiply and divide the decimal by $10$.
Complete step-by-step solution:
In this question, we need to convert $0.23\bar 4$ to a fraction.
Let x be that fraction.
Here, consider the given value as $x = 0.23\bar 4$.
Now, let us multiply and divide $0.23\bar 4$ by $100$, we have,
$x = 0.23\bar 4 \times \dfrac{{100}}{{100}}$
Then, $100x = 0.23\bar 4 \times 100$
$ \Rightarrow 100x = 23.\bar 4$
Hence, $100x = 23.4444....$
Let us consider this as the equation $\left( 1 \right)$.
Now, let us multiply and divide $23.\bar 4$ by $10$, we have,
$100x = 23.\bar 4 \times \left( {\dfrac{{10}}{{10}}} \right)$
Then, $1000x = 23.\bar 4 \times 10$
$ \Rightarrow 1000x = 234.\bar 4$
Hence, $1000x = 234.\bar 4$
Let us consider this as equation \[\left( 2 \right)\].
Now, we will subtract equation $\left( 1 \right)$ from equation \[\left( 2 \right)\].
Therefore, we have,
$1000x - 100x = \left( {234.\bar 4 - 23.\bar 4} \right)$
Hence, $900x = \left( {234.4444.... - 23.4444.....} \right)$
$ \Rightarrow 900x = 211$
\[ \Rightarrow x = \dfrac{{211}}{{900}}\]
Therefore, \[x = \dfrac{{211}}{{900}}\]
Hence, the converted value of $0.23\bar 4$ to a fraction is \[\left( {\dfrac{{211}}{{900}}} \right)\].
Note: In this question it is important to note that, here we have multiplied and divided $0.23\bar 4$ firstly by $100$ and then by $10$ respectively, then subtracted both the equations to determine the value of x as in this question we have a repetition of a repetition of $4$ in $0.23\bar 4$. The scenario may be different in each question depending on the situation as the decimal may have more number of digits as its repeating entity.
Complete step-by-step solution:
In this question, we need to convert $0.23\bar 4$ to a fraction.
Let x be that fraction.
Here, consider the given value as $x = 0.23\bar 4$.
Now, let us multiply and divide $0.23\bar 4$ by $100$, we have,
$x = 0.23\bar 4 \times \dfrac{{100}}{{100}}$
Then, $100x = 0.23\bar 4 \times 100$
$ \Rightarrow 100x = 23.\bar 4$
Hence, $100x = 23.4444....$
Let us consider this as the equation $\left( 1 \right)$.
Now, let us multiply and divide $23.\bar 4$ by $10$, we have,
$100x = 23.\bar 4 \times \left( {\dfrac{{10}}{{10}}} \right)$
Then, $1000x = 23.\bar 4 \times 10$
$ \Rightarrow 1000x = 234.\bar 4$
Hence, $1000x = 234.\bar 4$
Let us consider this as equation \[\left( 2 \right)\].
Now, we will subtract equation $\left( 1 \right)$ from equation \[\left( 2 \right)\].
Therefore, we have,
$1000x - 100x = \left( {234.\bar 4 - 23.\bar 4} \right)$
Hence, $900x = \left( {234.4444.... - 23.4444.....} \right)$
$ \Rightarrow 900x = 211$
\[ \Rightarrow x = \dfrac{{211}}{{900}}\]
Therefore, \[x = \dfrac{{211}}{{900}}\]
Hence, the converted value of $0.23\bar 4$ to a fraction is \[\left( {\dfrac{{211}}{{900}}} \right)\].
Note: In this question it is important to note that, here we have multiplied and divided $0.23\bar 4$ firstly by $100$ and then by $10$ respectively, then subtracted both the equations to determine the value of x as in this question we have a repetition of a repetition of $4$ in $0.23\bar 4$. The scenario may be different in each question depending on the situation as the decimal may have more number of digits as its repeating entity.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
