Answer
Verified
447.9k+ views
Hint:Firstly we will try to reduce $f\left( x \right)$ into a simpler form and then we will consider the equation of the normal to $f\left( x \right)$ at the given point $x = \dfrac{\pi }{6}$ and get the point required.
Complete step-by-step answer:
$f\left( x \right)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$ where $x \in \left( {0,\dfrac{\pi }{2}} \right)$$ - - - - - - (1)$
Consider $y = $$f(x)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$
Using $1 = {\sin ^2}x + {\cos ^2}x$ and $\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ we can write
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{{{\left( {\sin \dfrac{x}{2} - \cos \dfrac{x}{2}} \right)}^2}}}} - - - - - - (2)$
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} $
Using ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ where $a = \sin \dfrac{x}{2},b = \cos \dfrac{x}{2}$
Now it is given that $x \in \left( {0,\dfrac{\pi }{2}} \right)$
$0 < x < \dfrac{\pi }{2}$
$0 < \dfrac{x}{2} < \dfrac{\pi }{4}$
Therefore for $\dfrac{x}{2} \in \left( {0,\dfrac{\pi }{4}} \right)$, we know that,
$\cos \dfrac{x}{2} > \sin \dfrac{x}{2}$
$\cos \dfrac{x}{2} - \sin \dfrac{x}{2} > 0- - - - - - (3)$
Now by Substituting the value of equation 3 in equation 2 we will get.
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{(\tan \dfrac{x}{2} + 1)\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}(1 - \tan \dfrac{x}{2})}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}.1}}} \right)$
Using $\tan \dfrac{\pi }{4} = 1$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{x}{2}}}{{\tan \dfrac{\pi }{4} - \tan \dfrac{x}{2}.\tan \dfrac{\pi }{4}}}} \right)$
${\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - a.b}}} \right) = {\tan ^{ - 1}}a + {\tan ^{ - 1}}b$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2}} \right)$
Now we use
$a = {\tan ^{ - 1}}\left( {\tan a} \right)$
$y = f\left( x \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{x}{2}} \right) - - - - - (4)$
Now take derivative of (4) with respect to $x$,
$f'(x) = 0 + \dfrac{1}{2} = \dfrac{1}{2}$
So slope of the $y = f\left( x \right) = \dfrac{1}{2}$
Slope of line normal to $f(x) = - 2$
So according to the question,
We need to find the equation of the normal to $y = f\left( x \right)$ at $x = \dfrac{\pi }{6}$
Firstly we need to put $x = \dfrac{\pi }{6}$ in equation (4) and get the value of $y$
$y = f\left( {\dfrac{\pi }{6}} \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{{2.6}}} \right) = \dfrac{\pi }{3}$
$y = \dfrac{\pi }{3}$
So normal to $y = f(x)$ is at the point $\left( {\dfrac{\pi }{6},\dfrac{\pi }{3}} \right)$
So equation of the normal will be:
$(y - \dfrac{\pi }{3}) = - 2(y - \dfrac{\pi }{6}) - - - - - - (5)$
Now we have to check the options by putting them in this equation:
Taking $(0,0)$
$(0 - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$ - \dfrac{\pi }{3} \ne \dfrac{\pi }{3}$
So it is not satisfying.
Now taking $(0,\dfrac{{2\pi }}{3})$
$(\dfrac{{2\pi }}{3} - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$\dfrac{\pi }{3} = \dfrac{\pi }{3}$
Hence $(0,\dfrac{{2\pi }}{3})$ is the correct option.
So, the correct answer is “Option B”.
Note:We need to know that if the slope of the line is $a$, then the slope of its normal will be $\dfrac{1}{a}$. Also that equation of the line passing through $(l,m)$ and slope $a$ is $(y - m) = a(x - l)$.
Complete step-by-step answer:
$f\left( x \right)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$ where $x \in \left( {0,\dfrac{\pi }{2}} \right)$$ - - - - - - (1)$
Consider $y = $$f(x)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$
Using $1 = {\sin ^2}x + {\cos ^2}x$ and $\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ we can write
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{{{\left( {\sin \dfrac{x}{2} - \cos \dfrac{x}{2}} \right)}^2}}}} - - - - - - (2)$
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} $
Using ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ where $a = \sin \dfrac{x}{2},b = \cos \dfrac{x}{2}$
Now it is given that $x \in \left( {0,\dfrac{\pi }{2}} \right)$
$0 < x < \dfrac{\pi }{2}$
$0 < \dfrac{x}{2} < \dfrac{\pi }{4}$
Therefore for $\dfrac{x}{2} \in \left( {0,\dfrac{\pi }{4}} \right)$, we know that,
$\cos \dfrac{x}{2} > \sin \dfrac{x}{2}$
$\cos \dfrac{x}{2} - \sin \dfrac{x}{2} > 0- - - - - - (3)$
Now by Substituting the value of equation 3 in equation 2 we will get.
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{(\tan \dfrac{x}{2} + 1)\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}(1 - \tan \dfrac{x}{2})}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}.1}}} \right)$
Using $\tan \dfrac{\pi }{4} = 1$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{x}{2}}}{{\tan \dfrac{\pi }{4} - \tan \dfrac{x}{2}.\tan \dfrac{\pi }{4}}}} \right)$
${\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - a.b}}} \right) = {\tan ^{ - 1}}a + {\tan ^{ - 1}}b$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2}} \right)$
Now we use
$a = {\tan ^{ - 1}}\left( {\tan a} \right)$
$y = f\left( x \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{x}{2}} \right) - - - - - (4)$
Now take derivative of (4) with respect to $x$,
$f'(x) = 0 + \dfrac{1}{2} = \dfrac{1}{2}$
So slope of the $y = f\left( x \right) = \dfrac{1}{2}$
Slope of line normal to $f(x) = - 2$
So according to the question,
We need to find the equation of the normal to $y = f\left( x \right)$ at $x = \dfrac{\pi }{6}$
Firstly we need to put $x = \dfrac{\pi }{6}$ in equation (4) and get the value of $y$
$y = f\left( {\dfrac{\pi }{6}} \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{{2.6}}} \right) = \dfrac{\pi }{3}$
$y = \dfrac{\pi }{3}$
So normal to $y = f(x)$ is at the point $\left( {\dfrac{\pi }{6},\dfrac{\pi }{3}} \right)$
So equation of the normal will be:
$(y - \dfrac{\pi }{3}) = - 2(y - \dfrac{\pi }{6}) - - - - - - (5)$
Now we have to check the options by putting them in this equation:
Taking $(0,0)$
$(0 - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$ - \dfrac{\pi }{3} \ne \dfrac{\pi }{3}$
So it is not satisfying.
Now taking $(0,\dfrac{{2\pi }}{3})$
$(\dfrac{{2\pi }}{3} - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$\dfrac{\pi }{3} = \dfrac{\pi }{3}$
Hence $(0,\dfrac{{2\pi }}{3})$ is the correct option.
So, the correct answer is “Option B”.
Note:We need to know that if the slope of the line is $a$, then the slope of its normal will be $\dfrac{1}{a}$. Also that equation of the line passing through $(l,m)$ and slope $a$ is $(y - m) = a(x - l)$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths