
Consider three points $P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right),~Q=\left(
\cos \left( \beta -\alpha \right),\sin \beta \right)$ and $R=\left( \cos \left( \beta -\alpha +\theta
\right),\sin \left( \beta -\theta \right) \right)$, where $0<\alpha ,\beta ,\theta <\dfrac{\pi }{4}$. Then
(a) P lies on the line segment RQ
(b) Q lies on the line segment PR
(c) R lies on the line segment QP
(d) P, Q, R are non-collinear
Answer
540.9k+ views
Hint: Check collinearity of the given 3 points by using section formula.
The given points can be rewritten in simpler terms as
$P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right)=\left( {{x}_{1}},{{y}_{1}} \right)\cdots \cdots
\cdots \left( i \right)$
$Q=\left( \cos \left( \beta -\alpha \right),\sin \beta \right)=\left( {{x}_{2}},{{y}_{2}} \right)\cdots \cdots
\cdots \left( ii \right)$
Let the coordinates of the third point $R=\left( \cos \left( \beta -\alpha +\theta \right),\sin \left( \beta -
\theta \right) \right)=\left( {{x}_{3}},{{y}_{3}} \right)$. The ${{x}_{3}}$ coordinate can be simplified as,
${{x}_{3}}=\left( \cos \left( \beta -\alpha +\theta \right) \right)=\cos \left[ \left( \beta -\alpha
\right)+\theta \right]$
Applying the expansion $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]=\cos \left( \beta -\alpha \right)\cos
\theta -\sin \left( \beta -\alpha \right)\sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]={{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta
$
Now, the ${{y}_{3}}$ coordinate can be simplified as,
${{y}_{3}}=\sin \left( \beta -\theta \right)$
Applying the expansion $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$,
${{y}_{3}}=\sin \left( \beta -\theta \right)=\sin \beta \cos \theta -\cos \beta \sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{y}_{3}}=\sin \left( \beta -\theta \right)={{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta $
So, therefore the third point can be written as,
$R=\left( {{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)\cdots
\cdots \cdots \left( iii \right)$
Consider the line with endpoints PQ. Also consider the point R that lies on the line diving it in the ratio as
below,
Using the section formula, the coordinates of point R can be obtained as,
$R=\left( \dfrac{{{x}_{1}}\cos \theta +{{x}_{2}}\sin \theta }{\sin \theta +\cos \theta },\dfrac{{{y}_{1}}\cos
\theta +{{y}_{2}}\sin \theta }{\sin \theta +\cos \theta } \right)$
From equation $\left( iii \right)$, we have the coordinates of R as $\left( {{x}_{2}}\cos \theta
+{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)$. Comparing this with the above
coordinates, it is clear that the form of the coordinates is not the same.
Therefore, the point R will not lie on the line PQ. It means that the points P, Q and R are not collinear.
Hence, we obtain the correct answer as option (d).
Note: The problem can be solved by applying the condition for collinear points. To check if the points P,
Q and R lie on the same line, consider that point Q lies on line PR. Then, the slope of line PQ and slope of
line QR must be equal for the points to be collinear.
The given points can be rewritten in simpler terms as
$P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right)=\left( {{x}_{1}},{{y}_{1}} \right)\cdots \cdots
\cdots \left( i \right)$
$Q=\left( \cos \left( \beta -\alpha \right),\sin \beta \right)=\left( {{x}_{2}},{{y}_{2}} \right)\cdots \cdots
\cdots \left( ii \right)$
Let the coordinates of the third point $R=\left( \cos \left( \beta -\alpha +\theta \right),\sin \left( \beta -
\theta \right) \right)=\left( {{x}_{3}},{{y}_{3}} \right)$. The ${{x}_{3}}$ coordinate can be simplified as,
${{x}_{3}}=\left( \cos \left( \beta -\alpha +\theta \right) \right)=\cos \left[ \left( \beta -\alpha
\right)+\theta \right]$
Applying the expansion $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]=\cos \left( \beta -\alpha \right)\cos
\theta -\sin \left( \beta -\alpha \right)\sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]={{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta
$
Now, the ${{y}_{3}}$ coordinate can be simplified as,
${{y}_{3}}=\sin \left( \beta -\theta \right)$
Applying the expansion $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$,
${{y}_{3}}=\sin \left( \beta -\theta \right)=\sin \beta \cos \theta -\cos \beta \sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{y}_{3}}=\sin \left( \beta -\theta \right)={{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta $
So, therefore the third point can be written as,
$R=\left( {{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)\cdots
\cdots \cdots \left( iii \right)$
Consider the line with endpoints PQ. Also consider the point R that lies on the line diving it in the ratio as
below,
Using the section formula, the coordinates of point R can be obtained as,
$R=\left( \dfrac{{{x}_{1}}\cos \theta +{{x}_{2}}\sin \theta }{\sin \theta +\cos \theta },\dfrac{{{y}_{1}}\cos
\theta +{{y}_{2}}\sin \theta }{\sin \theta +\cos \theta } \right)$
From equation $\left( iii \right)$, we have the coordinates of R as $\left( {{x}_{2}}\cos \theta
+{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)$. Comparing this with the above
coordinates, it is clear that the form of the coordinates is not the same.
Therefore, the point R will not lie on the line PQ. It means that the points P, Q and R are not collinear.
Hence, we obtain the correct answer as option (d).
Note: The problem can be solved by applying the condition for collinear points. To check if the points P,
Q and R lie on the same line, consider that point Q lies on line PR. Then, the slope of line PQ and slope of
line QR must be equal for the points to be collinear.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
