Answer
Verified
496.2k+ views
Hint: Check collinearity of the given 3 points by using section formula.
The given points can be rewritten in simpler terms as
$P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right)=\left( {{x}_{1}},{{y}_{1}} \right)\cdots \cdots
\cdots \left( i \right)$
$Q=\left( \cos \left( \beta -\alpha \right),\sin \beta \right)=\left( {{x}_{2}},{{y}_{2}} \right)\cdots \cdots
\cdots \left( ii \right)$
Let the coordinates of the third point $R=\left( \cos \left( \beta -\alpha +\theta \right),\sin \left( \beta -
\theta \right) \right)=\left( {{x}_{3}},{{y}_{3}} \right)$. The ${{x}_{3}}$ coordinate can be simplified as,
${{x}_{3}}=\left( \cos \left( \beta -\alpha +\theta \right) \right)=\cos \left[ \left( \beta -\alpha
\right)+\theta \right]$
Applying the expansion $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]=\cos \left( \beta -\alpha \right)\cos
\theta -\sin \left( \beta -\alpha \right)\sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]={{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta
$
Now, the ${{y}_{3}}$ coordinate can be simplified as,
${{y}_{3}}=\sin \left( \beta -\theta \right)$
Applying the expansion $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$,
${{y}_{3}}=\sin \left( \beta -\theta \right)=\sin \beta \cos \theta -\cos \beta \sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{y}_{3}}=\sin \left( \beta -\theta \right)={{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta $
So, therefore the third point can be written as,
$R=\left( {{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)\cdots
\cdots \cdots \left( iii \right)$
Consider the line with endpoints PQ. Also consider the point R that lies on the line diving it in the ratio as
below,
Using the section formula, the coordinates of point R can be obtained as,
$R=\left( \dfrac{{{x}_{1}}\cos \theta +{{x}_{2}}\sin \theta }{\sin \theta +\cos \theta },\dfrac{{{y}_{1}}\cos
\theta +{{y}_{2}}\sin \theta }{\sin \theta +\cos \theta } \right)$
From equation $\left( iii \right)$, we have the coordinates of R as $\left( {{x}_{2}}\cos \theta
+{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)$. Comparing this with the above
coordinates, it is clear that the form of the coordinates is not the same.
Therefore, the point R will not lie on the line PQ. It means that the points P, Q and R are not collinear.
Hence, we obtain the correct answer as option (d).
Note: The problem can be solved by applying the condition for collinear points. To check if the points P,
Q and R lie on the same line, consider that point Q lies on line PR. Then, the slope of line PQ and slope of
line QR must be equal for the points to be collinear.
The given points can be rewritten in simpler terms as
$P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right)=\left( {{x}_{1}},{{y}_{1}} \right)\cdots \cdots
\cdots \left( i \right)$
$Q=\left( \cos \left( \beta -\alpha \right),\sin \beta \right)=\left( {{x}_{2}},{{y}_{2}} \right)\cdots \cdots
\cdots \left( ii \right)$
Let the coordinates of the third point $R=\left( \cos \left( \beta -\alpha +\theta \right),\sin \left( \beta -
\theta \right) \right)=\left( {{x}_{3}},{{y}_{3}} \right)$. The ${{x}_{3}}$ coordinate can be simplified as,
${{x}_{3}}=\left( \cos \left( \beta -\alpha +\theta \right) \right)=\cos \left[ \left( \beta -\alpha
\right)+\theta \right]$
Applying the expansion $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]=\cos \left( \beta -\alpha \right)\cos
\theta -\sin \left( \beta -\alpha \right)\sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]={{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta
$
Now, the ${{y}_{3}}$ coordinate can be simplified as,
${{y}_{3}}=\sin \left( \beta -\theta \right)$
Applying the expansion $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$,
${{y}_{3}}=\sin \left( \beta -\theta \right)=\sin \beta \cos \theta -\cos \beta \sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{y}_{3}}=\sin \left( \beta -\theta \right)={{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta $
So, therefore the third point can be written as,
$R=\left( {{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)\cdots
\cdots \cdots \left( iii \right)$
Consider the line with endpoints PQ. Also consider the point R that lies on the line diving it in the ratio as
below,
Using the section formula, the coordinates of point R can be obtained as,
$R=\left( \dfrac{{{x}_{1}}\cos \theta +{{x}_{2}}\sin \theta }{\sin \theta +\cos \theta },\dfrac{{{y}_{1}}\cos
\theta +{{y}_{2}}\sin \theta }{\sin \theta +\cos \theta } \right)$
From equation $\left( iii \right)$, we have the coordinates of R as $\left( {{x}_{2}}\cos \theta
+{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)$. Comparing this with the above
coordinates, it is clear that the form of the coordinates is not the same.
Therefore, the point R will not lie on the line PQ. It means that the points P, Q and R are not collinear.
Hence, we obtain the correct answer as option (d).
Note: The problem can be solved by applying the condition for collinear points. To check if the points P,
Q and R lie on the same line, consider that point Q lies on line PR. Then, the slope of line PQ and slope of
line QR must be equal for the points to be collinear.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths