Answer
Verified
466.2k+ views
Hint: Apply limit to the given function separately at point x = 0 and x = 1 and then substitute \[\{x\}+\left[ x \right]=x\], $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$ and $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, simplify it further. Then check the validity of the options by using various properties of the limit.
Complete step by step answer:
We are given the function \[f(x)=\left[ \begin{matrix}
\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\
1 \\
\sqrt{\left\{ x \right\}\cot \left\{ x \right\}} \\
\end{matrix}\begin{matrix}
for\text{ }x>0\text{ } \\
for\text{ }x=0\text{ } \\
for\text{ }x<0\text{ } \\
\end{matrix} \right.\]
We will apply the limit to the given function around the point \[x=0\] under various conditions and then check the continuity of the function around the point \[x=1\].
We know that \[\left\{ x \right\}\] is the function that evaluates the fractional value of \[x\] and $\left[ x \right]$ is the function that evaluates the integral value of \[x\].
For\[x>0\], we have the function\[f(x)\]such that\[f\left( x \right)=\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}\].
Thus, by applying the limit on the given function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}$
Now we will apply left hand limit using the formula, $f\left( {{0}^{+}} \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(0+h)-f(0)}{0+h}$, we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ 0+h \right\}}{{{\left( 0+h \right)}^{2}}-{{\left[ 0+h \right]}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}h}{{{h}^{2}}} \\
\end{align}$
As, we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$, so, we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}x}{{{x}^{2}}}=1\] as well.
Thus, we get \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{\left\{ x \right\}}^{2}}}=1\].
Hence, we have the value of limit as \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}=1\].
Now, we will consider the case \[x<0\]. For \[x<0\], we have the function \[f(x)\] such that \[f\left( x \right)=\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}\].
Applying the limit on the given function, we get
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}$
Further simplifying the limit, we have
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}$ as we know that \[\cot x=\dfrac{\cos x}{\sin x}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, we have\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}\]
Thus, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}=\sqrt{\cos 0}=1\]
Hence, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\]
Now, we need to evaluate the value of
${{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}$
As \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\], we have
\[{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}={{\cot }^{-1}}{{\left( 1 \right)}^{2}}={{\cot }^{-1}}1=\dfrac{\pi }{4}\]
Now, we will check the continuity of \[f\] at point $x=1$ as for \[x=1\], we have
\[f\left( {{x}^{-}} \right)=f\left( {{x}^{+}} \right)\].
Thus, the function\[f\]is continuous at $x=1$
So, the correct answers are “Option A, B and D”.
Note: It’s necessary to evaluate both left- and right-hand side of the limit around a point. Otherwise, we won’t get a correct answer if we apply only one side of the limit.
Students sometimes substitute \[\{x\}+\left[ x \right]=x\Rightarrow \left[ x \right]=x-\{x\}\], in this way the process will get lengthy and chances of getting the wrong solution is there.
Complete step by step answer:
We are given the function \[f(x)=\left[ \begin{matrix}
\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\
1 \\
\sqrt{\left\{ x \right\}\cot \left\{ x \right\}} \\
\end{matrix}\begin{matrix}
for\text{ }x>0\text{ } \\
for\text{ }x=0\text{ } \\
for\text{ }x<0\text{ } \\
\end{matrix} \right.\]
We will apply the limit to the given function around the point \[x=0\] under various conditions and then check the continuity of the function around the point \[x=1\].
We know that \[\left\{ x \right\}\] is the function that evaluates the fractional value of \[x\] and $\left[ x \right]$ is the function that evaluates the integral value of \[x\].
For\[x>0\], we have the function\[f(x)\]such that\[f\left( x \right)=\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}\].
Thus, by applying the limit on the given function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}$
Now we will apply left hand limit using the formula, $f\left( {{0}^{+}} \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(0+h)-f(0)}{0+h}$, we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ 0+h \right\}}{{{\left( 0+h \right)}^{2}}-{{\left[ 0+h \right]}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}h}{{{h}^{2}}} \\
\end{align}$
As, we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$, so, we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}x}{{{x}^{2}}}=1\] as well.
Thus, we get \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{\left\{ x \right\}}^{2}}}=1\].
Hence, we have the value of limit as \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}=1\].
Now, we will consider the case \[x<0\]. For \[x<0\], we have the function \[f(x)\] such that \[f\left( x \right)=\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}\].
Applying the limit on the given function, we get
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}$
Further simplifying the limit, we have
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}$ as we know that \[\cot x=\dfrac{\cos x}{\sin x}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, we have\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}\]
Thus, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}=\sqrt{\cos 0}=1\]
Hence, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\]
Now, we need to evaluate the value of
${{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}$
As \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\], we have
\[{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}={{\cot }^{-1}}{{\left( 1 \right)}^{2}}={{\cot }^{-1}}1=\dfrac{\pi }{4}\]
Now, we will check the continuity of \[f\] at point $x=1$ as for \[x=1\], we have
\[f\left( {{x}^{-}} \right)=f\left( {{x}^{+}} \right)\].
Thus, the function\[f\]is continuous at $x=1$
So, the correct answers are “Option A, B and D”.
Note: It’s necessary to evaluate both left- and right-hand side of the limit around a point. Otherwise, we won’t get a correct answer if we apply only one side of the limit.
Students sometimes substitute \[\{x\}+\left[ x \right]=x\Rightarrow \left[ x \right]=x-\{x\}\], in this way the process will get lengthy and chances of getting the wrong solution is there.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE