
Consider the following reversible chemical reactions :
${A_2}(g) + B{r_2}(g) \rightleftharpoons 2AB(g)...(1){K_1}$
$6AB(g) \rightleftharpoons 3{A_2}(g) + 3{B_2}...(2){K_2}$
a.) ${K_2}$= $K_1^3$
b.) ${K_2}$= $K_1^{ - 3}$
c.) ${K_1}$${K_2}$= 3
d.) ${K_1}$${K_2}$= $\dfrac{1}{3}$
Answer
554.4k+ views
Hint: The Equilibrium is a situation when the rate of forward reaction is equal to the rate of backward reaction. The equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction. Further, we know that if we multiply an equation by n factor then its equilibrium constant can be given by ${K^n}$. By following these, we can get our answer.
Complete step by step answer :
The Equilibrium is a situation when the rate of forward reaction is equal to the rate of backward reaction.
The Equilibrium constant of a reaction is the constant measured at the equilibrium.
The equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.
Now, let us see the reactions as-
${A_2}(g) + B{r_2}(g) \rightleftharpoons 2AB(g)...(1){K_1}$
$6AB(g) \rightleftharpoons 3{A_2}(g) + 3{B_2}...(2){K_2}$
For the first reaction; we have the equilibrium constant is ${K_1}$.
And for the second reaction, it is ${K_2}$.
If we reverse the second reaction and let its equilibrium constant be K and be its third reaction.
Then, it can be written as-
$3{A_2}(g) + 3{B_2} \rightleftharpoons 6AB(g)$
The equilibrium constant of this reaction i.e. K will be the reverse of the equilibrium constant of the second reaction.
Further, we know that if we multiply equation 1 with 3; we get a third equation.
And we know that if we multiply an equation by n factor then its equilibrium constant can be given by ${K^n}$.
So, for the third equation, we can write K = $K_1^3$
Also, we have K = $K_2^{ - 1}$
Thus, $K_1^3$= $K_2^{ - 1}$
So, this is our answer. But, this is not in any options.
Note : It must be noted that the equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium. The equilibrium constant describes the relationship between products and reactants of a reaction at equilibrium with respect to specific units.
Complete step by step answer :
The Equilibrium is a situation when the rate of forward reaction is equal to the rate of backward reaction.
The Equilibrium constant of a reaction is the constant measured at the equilibrium.
The equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.
Now, let us see the reactions as-
${A_2}(g) + B{r_2}(g) \rightleftharpoons 2AB(g)...(1){K_1}$
$6AB(g) \rightleftharpoons 3{A_2}(g) + 3{B_2}...(2){K_2}$
For the first reaction; we have the equilibrium constant is ${K_1}$.
And for the second reaction, it is ${K_2}$.
If we reverse the second reaction and let its equilibrium constant be K and be its third reaction.
Then, it can be written as-
$3{A_2}(g) + 3{B_2} \rightleftharpoons 6AB(g)$
The equilibrium constant of this reaction i.e. K will be the reverse of the equilibrium constant of the second reaction.
Further, we know that if we multiply equation 1 with 3; we get a third equation.
And we know that if we multiply an equation by n factor then its equilibrium constant can be given by ${K^n}$.
So, for the third equation, we can write K = $K_1^3$
Also, we have K = $K_2^{ - 1}$
Thus, $K_1^3$= $K_2^{ - 1}$
So, this is our answer. But, this is not in any options.
Note : It must be noted that the equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium. The equilibrium constant describes the relationship between products and reactants of a reaction at equilibrium with respect to specific units.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

