
Consider the family of circles whose center lies on the straight line y = x.
If this family of circles is represented by the differential equation $Py''+Qy'+1=0$ , Where P, Q are functions of x, y and y’ (here $y'=\dfrac{dy}{dx},y''=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$), then which of the following is (are) true
$\begin{align}
& \text{a) P = x + y} \\
& \text{b) P = y - x} \\
& \text{c) P + Q =1-x + y + y }\!\!'\!\!\text{ + (y }\!\!'\!\!\text{ }{{\text{)}}^{2}} \\
& \text{d) P - Q = x + y - y }\!\!'\!\!\text{ - (y }\!\!'\!\!\text{ }{{\text{)}}^{2}} \\
\end{align}$
Answer
591.6k+ views
Hint: We know that the center of all the circles lies on the line x = y. Let us take the centers to be (α, α) . Now we know that the equation of circle with centre (α, α) and radius r is ${{(x-\alpha )}^{2}}+{{(y-\alpha )}^{2}}={{r}^{2}}$ . Now we will differentiate the equation two times. From the first differential we find the value of α and substitute this in the second differential. Hence we will have an equation in the form of $Py''+Qy'+1=0$ from which we can find the value of P and Q.
Complete step by step answer:
Now we are given that the centers of the circles lie on the line x = y.
Hence let us take this centers as $(\alpha ,\alpha )$ .
Now we know that the equation of the circle with centre $(a,b)$ and radius $r$ is given by ${{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}$
Hence the equation of the circle with radius $(\alpha ,\alpha )$ and radius r will be.
${{(x-\alpha )}^{2}}+{{(y-\alpha )}^{2}}={{r}^{2}}$
Now Let us differentiate the equation with respect to x.
$2(x-\alpha )+2(y-\alpha )\dfrac{dy}{dx}=0$
\[\begin{align}
& \Rightarrow (x-\alpha )+(y-\alpha )\dfrac{dy}{dx}=0..........(1) \\
& \Rightarrow x-\alpha +y\dfrac{dy}{dx}-\alpha \dfrac{dy}{dx}=0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow x+y\dfrac{dy}{dx}-\alpha \left( 1+\dfrac{dy}{dx} \right)=0 \\
& \Rightarrow x+y\dfrac{dy}{dx}=\alpha \left( 1+\dfrac{dy}{dx} \right) \\
& \Rightarrow \dfrac{x+y\dfrac{dy}{dx}}{\left( 1+\dfrac{dy}{dx} \right)}=\alpha \\
& \text{Hence we have }\alpha =\dfrac{x+yy'}{1+y'} \\
& \alpha =\dfrac{x+yy'}{1+y'}.........................(2) \\
\end{align}\]
Now let us again consider equation (1) which is $(x-\alpha )+(y-\alpha )\dfrac{dy}{dx}=0.$
Differentiating the equation again we get.
\[(1)+\left[ {{\left( \dfrac{dy}{dx} \right)}^{2}}+\left( y-\alpha \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right]=0\]
Now substituting the value of α from (2) we get
\[\begin{align}
& (1)+\left[ y{{'}^{2}}+\left( y-\dfrac{x+yy'}{1+y'} \right)y'' \right]=0 \\
& \Rightarrow 1+\left[ y{{'}^{2}}+\left( y-\dfrac{x+yy'}{1+y'} \right)y'' \right]=0 \\
& \Rightarrow 1+y{{'}^{2}}+\left( \dfrac{y+yy'-x-yy'}{1+y'} \right)y''=0 \\
& \Rightarrow 1+y{{'}^{2}}+\left( \dfrac{y-x}{1+y'} \right)y''=0 \\
\end{align}\]
Multiplying the equation by $1+y'$ we get
$\begin{align}
& \Rightarrow 1+y{{'}^{2}}+y'+y{{'}^{3}}+(y-x)y''=0 \\
& \Rightarrow y''(y-x)+y'(1+y'+y{{'}^{2}})+1=0 \\
\end{align}$
Now Comparing the equation with $Py''+Qy'+1=0$ we get
$\begin{align}
& P=(y-x) \\
& Q=(1+y'+y{{'}^{2}}) \\
\end{align}$
$\begin{align}
& P+Q=y-x+1+y'+y{{'}^{2}} \\
& P-Q=y-x-1-y'-y{{'}^{2}} \\
\end{align}$
So, the correct answer is “Option B and C”.
Note: here while differentiating the equation of circle note that y is a function of x and hence differentiation of ${{(y-\alpha )}^{2}}=2(y-\alpha )\dfrac{dy}{dx}$ and not just $2(y-\alpha )$.
Complete step by step answer:
Now we are given that the centers of the circles lie on the line x = y.
Hence let us take this centers as $(\alpha ,\alpha )$ .
Now we know that the equation of the circle with centre $(a,b)$ and radius $r$ is given by ${{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}$
Hence the equation of the circle with radius $(\alpha ,\alpha )$ and radius r will be.
${{(x-\alpha )}^{2}}+{{(y-\alpha )}^{2}}={{r}^{2}}$
Now Let us differentiate the equation with respect to x.
$2(x-\alpha )+2(y-\alpha )\dfrac{dy}{dx}=0$
\[\begin{align}
& \Rightarrow (x-\alpha )+(y-\alpha )\dfrac{dy}{dx}=0..........(1) \\
& \Rightarrow x-\alpha +y\dfrac{dy}{dx}-\alpha \dfrac{dy}{dx}=0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow x+y\dfrac{dy}{dx}-\alpha \left( 1+\dfrac{dy}{dx} \right)=0 \\
& \Rightarrow x+y\dfrac{dy}{dx}=\alpha \left( 1+\dfrac{dy}{dx} \right) \\
& \Rightarrow \dfrac{x+y\dfrac{dy}{dx}}{\left( 1+\dfrac{dy}{dx} \right)}=\alpha \\
& \text{Hence we have }\alpha =\dfrac{x+yy'}{1+y'} \\
& \alpha =\dfrac{x+yy'}{1+y'}.........................(2) \\
\end{align}\]
Now let us again consider equation (1) which is $(x-\alpha )+(y-\alpha )\dfrac{dy}{dx}=0.$
Differentiating the equation again we get.
\[(1)+\left[ {{\left( \dfrac{dy}{dx} \right)}^{2}}+\left( y-\alpha \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right]=0\]
Now substituting the value of α from (2) we get
\[\begin{align}
& (1)+\left[ y{{'}^{2}}+\left( y-\dfrac{x+yy'}{1+y'} \right)y'' \right]=0 \\
& \Rightarrow 1+\left[ y{{'}^{2}}+\left( y-\dfrac{x+yy'}{1+y'} \right)y'' \right]=0 \\
& \Rightarrow 1+y{{'}^{2}}+\left( \dfrac{y+yy'-x-yy'}{1+y'} \right)y''=0 \\
& \Rightarrow 1+y{{'}^{2}}+\left( \dfrac{y-x}{1+y'} \right)y''=0 \\
\end{align}\]
Multiplying the equation by $1+y'$ we get
$\begin{align}
& \Rightarrow 1+y{{'}^{2}}+y'+y{{'}^{3}}+(y-x)y''=0 \\
& \Rightarrow y''(y-x)+y'(1+y'+y{{'}^{2}})+1=0 \\
\end{align}$
Now Comparing the equation with $Py''+Qy'+1=0$ we get
$\begin{align}
& P=(y-x) \\
& Q=(1+y'+y{{'}^{2}}) \\
\end{align}$
$\begin{align}
& P+Q=y-x+1+y'+y{{'}^{2}} \\
& P-Q=y-x-1-y'-y{{'}^{2}} \\
\end{align}$
So, the correct answer is “Option B and C”.
Note: here while differentiating the equation of circle note that y is a function of x and hence differentiation of ${{(y-\alpha )}^{2}}=2(y-\alpha )\dfrac{dy}{dx}$ and not just $2(y-\alpha )$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

