
Consider the differential equation, ${{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0.$ If the value of $y$ is 1 when $x=1$, then the value of $x$ for which $y=2$, is?
Answer
506.7k+ views
Hint: We start solving this problem by converting the given differential equation into the form $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ . Then we find the integrating factor of the differential equation by using the formula ${{e}^{\int{P\left( y \right)dy}}}$ . Then we solve the differential equation by using the formula \[x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C\] . Then we use the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$ . Then we get the solution of the given integral. We Substitute $x=1$ and $y=1$ to get the value of the constant term in the solution. Then we substitute $y=2$ in the final equation to get the value of $x$.
Complete step by step answer:
Let us consider the given differential equation,
${{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0$
Now, we divide the above differential equation by $dy$ on both sides. Then we get,
$\begin{align}
& {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)\dfrac{dy}{dy}=\dfrac{0}{dy} \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)=0 \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+x=\dfrac{1}{y} \\
\end{align}$
Now, let us divide the above differential equation by ${{y}^{2}}$ on both the sides, we get,
$\dfrac{dx}{dy}+\dfrac{x}{{{y}^{2}}}=\dfrac{1}{{{y}^{3}}}$
By comparing the above differential equation with $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , we get, $P\left( y \right)=\dfrac{1}{{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{1}{{{y}^{3}}}$.
Now, let us consider the formula of integrating factor, ${{e}^{\int{P\left( y \right)dy}}}$
By using the above formula, we find the integrating factor. Then we get,
$\begin{align}
& {{e}^{\int{P\left( y \right)dy}}} \\
& ={{e}^{\int{\dfrac{1}{{{y}^{2}}}dy}}} \\
& ={{e}^{\dfrac{-1}{y}}} \\
\end{align}$
So, the integrating factor is ${{e}^{\dfrac{-1}{y}}}$.
Now, let us consider the formula for the solution of a differential equation of the form $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , that is, \[x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C\]
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
\end{align}\]
Let us consider $t=\dfrac{-1}{y}$ .
By differentiating on both the sides gives us
$dt=\dfrac{-1}{{{y}^{2}}}dy$
So, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{-t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
\end{align}\]
Now, let us consider the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$.
While applying this formula we need to select the functions $f\left( x \right)$ using a rule called as ILATE rule, that is we need to select the function $f\left( x \right)$in the order Inverse, Logarithm, Algebraic, Trigonometric and Exponential and $g\left( x \right)$ will be the other one.
We have two terms in our integral $t$ and ${{e}^{t}}$, let us the ILATE rule for choosing which of them is $f$ and which is $g$. We can see that algebraic function occurs before exponential function. So, we select $f\left( x \right)$ and $g\left( x \right)$ as $f\left( t \right)=t$ and $g\left( t \right)={{e}^{t}}$.
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\left[ t\int{{{e}^{t}}dt}-\int{\left( \dfrac{d}{dt}t \right)\left( \int{{{e}^{t}}dt} \right)dt} \right]+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-t{{e}^{t}}+\int{1.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
\end{align}\]
Now let us convert $t$ into $\dfrac{-1}{y}$. Then we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
\end{align}\]
Now, let us substitute $x=1$ and $y=1$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
& 1.{{e}^{-1}}=2{{e}^{-1}}+C \\
& C=2{{e}^{-1}}-{{e}^{-1}} \\
& C={{e}^{-1}} \\
& C=\dfrac{1}{e} \\
\end{align}\]
So, we get the equation as \[x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+\dfrac{1}{e}\]
Now, let us substitute $y=2$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( 1+\dfrac{1}{2} \right)+\dfrac{1}{e} \\
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+\dfrac{1}{e} \\
& x=\dfrac{{{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+{{e}^{-1}}}{{{e}^{\dfrac{-1}{2}}}} \\
& x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}} \\
\end{align}\]
Hence, the answer is \[x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}\]
Note: The possibilities for making mistakes in this type of problems are, one may make a mistake by considering the formula of integral of product of two functions $f\left( x \right)$ and $g\left( x \right)$ as $\int{f\left( x \right)g\left( x \right)dx=}\left( \int{f\left( x \right)dx} \right)\left( \int{g\left( x \right)dx} \right)$.
Complete step by step answer:
Let us consider the given differential equation,
${{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0$
Now, we divide the above differential equation by $dy$ on both sides. Then we get,
$\begin{align}
& {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)\dfrac{dy}{dy}=\dfrac{0}{dy} \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)=0 \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+x=\dfrac{1}{y} \\
\end{align}$
Now, let us divide the above differential equation by ${{y}^{2}}$ on both the sides, we get,
$\dfrac{dx}{dy}+\dfrac{x}{{{y}^{2}}}=\dfrac{1}{{{y}^{3}}}$
By comparing the above differential equation with $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , we get, $P\left( y \right)=\dfrac{1}{{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{1}{{{y}^{3}}}$.
Now, let us consider the formula of integrating factor, ${{e}^{\int{P\left( y \right)dy}}}$
By using the above formula, we find the integrating factor. Then we get,
$\begin{align}
& {{e}^{\int{P\left( y \right)dy}}} \\
& ={{e}^{\int{\dfrac{1}{{{y}^{2}}}dy}}} \\
& ={{e}^{\dfrac{-1}{y}}} \\
\end{align}$
So, the integrating factor is ${{e}^{\dfrac{-1}{y}}}$.
Now, let us consider the formula for the solution of a differential equation of the form $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , that is, \[x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C\]
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
\end{align}\]
Let us consider $t=\dfrac{-1}{y}$ .
By differentiating on both the sides gives us
$dt=\dfrac{-1}{{{y}^{2}}}dy$
So, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{-t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
\end{align}\]
Now, let us consider the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$.
While applying this formula we need to select the functions $f\left( x \right)$ using a rule called as ILATE rule, that is we need to select the function $f\left( x \right)$in the order Inverse, Logarithm, Algebraic, Trigonometric and Exponential and $g\left( x \right)$ will be the other one.
We have two terms in our integral $t$ and ${{e}^{t}}$, let us the ILATE rule for choosing which of them is $f$ and which is $g$. We can see that algebraic function occurs before exponential function. So, we select $f\left( x \right)$ and $g\left( x \right)$ as $f\left( t \right)=t$ and $g\left( t \right)={{e}^{t}}$.
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\left[ t\int{{{e}^{t}}dt}-\int{\left( \dfrac{d}{dt}t \right)\left( \int{{{e}^{t}}dt} \right)dt} \right]+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-t{{e}^{t}}+\int{1.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
\end{align}\]
Now let us convert $t$ into $\dfrac{-1}{y}$. Then we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
\end{align}\]
Now, let us substitute $x=1$ and $y=1$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
& 1.{{e}^{-1}}=2{{e}^{-1}}+C \\
& C=2{{e}^{-1}}-{{e}^{-1}} \\
& C={{e}^{-1}} \\
& C=\dfrac{1}{e} \\
\end{align}\]
So, we get the equation as \[x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+\dfrac{1}{e}\]
Now, let us substitute $y=2$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( 1+\dfrac{1}{2} \right)+\dfrac{1}{e} \\
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+\dfrac{1}{e} \\
& x=\dfrac{{{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+{{e}^{-1}}}{{{e}^{\dfrac{-1}{2}}}} \\
& x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}} \\
\end{align}\]
Hence, the answer is \[x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}\]
Note: The possibilities for making mistakes in this type of problems are, one may make a mistake by considering the formula of integral of product of two functions $f\left( x \right)$ and $g\left( x \right)$ as $\int{f\left( x \right)g\left( x \right)dx=}\left( \int{f\left( x \right)dx} \right)\left( \int{g\left( x \right)dx} \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
