
Consider the differential equation, ${{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0.$ If the value of $y$ is 1 when $x=1$, then the value of $x$ for which $y=2$, is?
Answer
576.6k+ views
Hint: We start solving this problem by converting the given differential equation into the form $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ . Then we find the integrating factor of the differential equation by using the formula ${{e}^{\int{P\left( y \right)dy}}}$ . Then we solve the differential equation by using the formula \[x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C\] . Then we use the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$ . Then we get the solution of the given integral. We Substitute $x=1$ and $y=1$ to get the value of the constant term in the solution. Then we substitute $y=2$ in the final equation to get the value of $x$.
Complete step by step answer:
Let us consider the given differential equation,
${{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0$
Now, we divide the above differential equation by $dy$ on both sides. Then we get,
$\begin{align}
& {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)\dfrac{dy}{dy}=\dfrac{0}{dy} \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)=0 \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+x=\dfrac{1}{y} \\
\end{align}$
Now, let us divide the above differential equation by ${{y}^{2}}$ on both the sides, we get,
$\dfrac{dx}{dy}+\dfrac{x}{{{y}^{2}}}=\dfrac{1}{{{y}^{3}}}$
By comparing the above differential equation with $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , we get, $P\left( y \right)=\dfrac{1}{{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{1}{{{y}^{3}}}$.
Now, let us consider the formula of integrating factor, ${{e}^{\int{P\left( y \right)dy}}}$
By using the above formula, we find the integrating factor. Then we get,
$\begin{align}
& {{e}^{\int{P\left( y \right)dy}}} \\
& ={{e}^{\int{\dfrac{1}{{{y}^{2}}}dy}}} \\
& ={{e}^{\dfrac{-1}{y}}} \\
\end{align}$
So, the integrating factor is ${{e}^{\dfrac{-1}{y}}}$.
Now, let us consider the formula for the solution of a differential equation of the form $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , that is, \[x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C\]
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
\end{align}\]
Let us consider $t=\dfrac{-1}{y}$ .
By differentiating on both the sides gives us
$dt=\dfrac{-1}{{{y}^{2}}}dy$
So, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{-t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
\end{align}\]
Now, let us consider the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$.
While applying this formula we need to select the functions $f\left( x \right)$ using a rule called as ILATE rule, that is we need to select the function $f\left( x \right)$in the order Inverse, Logarithm, Algebraic, Trigonometric and Exponential and $g\left( x \right)$ will be the other one.
We have two terms in our integral $t$ and ${{e}^{t}}$, let us the ILATE rule for choosing which of them is $f$ and which is $g$. We can see that algebraic function occurs before exponential function. So, we select $f\left( x \right)$ and $g\left( x \right)$ as $f\left( t \right)=t$ and $g\left( t \right)={{e}^{t}}$.
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\left[ t\int{{{e}^{t}}dt}-\int{\left( \dfrac{d}{dt}t \right)\left( \int{{{e}^{t}}dt} \right)dt} \right]+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-t{{e}^{t}}+\int{1.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
\end{align}\]
Now let us convert $t$ into $\dfrac{-1}{y}$. Then we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
\end{align}\]
Now, let us substitute $x=1$ and $y=1$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
& 1.{{e}^{-1}}=2{{e}^{-1}}+C \\
& C=2{{e}^{-1}}-{{e}^{-1}} \\
& C={{e}^{-1}} \\
& C=\dfrac{1}{e} \\
\end{align}\]
So, we get the equation as \[x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+\dfrac{1}{e}\]
Now, let us substitute $y=2$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( 1+\dfrac{1}{2} \right)+\dfrac{1}{e} \\
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+\dfrac{1}{e} \\
& x=\dfrac{{{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+{{e}^{-1}}}{{{e}^{\dfrac{-1}{2}}}} \\
& x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}} \\
\end{align}\]
Hence, the answer is \[x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}\]
Note: The possibilities for making mistakes in this type of problems are, one may make a mistake by considering the formula of integral of product of two functions $f\left( x \right)$ and $g\left( x \right)$ as $\int{f\left( x \right)g\left( x \right)dx=}\left( \int{f\left( x \right)dx} \right)\left( \int{g\left( x \right)dx} \right)$.
Complete step by step answer:
Let us consider the given differential equation,
${{y}^{2}}dx+\left( x-\dfrac{1}{y} \right)dy=0$
Now, we divide the above differential equation by $dy$ on both sides. Then we get,
$\begin{align}
& {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)\dfrac{dy}{dy}=\dfrac{0}{dy} \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+\left( x-\dfrac{1}{y} \right)=0 \\
& \Rightarrow {{y}^{2}}\dfrac{dx}{dy}+x=\dfrac{1}{y} \\
\end{align}$
Now, let us divide the above differential equation by ${{y}^{2}}$ on both the sides, we get,
$\dfrac{dx}{dy}+\dfrac{x}{{{y}^{2}}}=\dfrac{1}{{{y}^{3}}}$
By comparing the above differential equation with $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , we get, $P\left( y \right)=\dfrac{1}{{{y}^{2}}}$ and $Q\left( y \right)=\dfrac{1}{{{y}^{3}}}$.
Now, let us consider the formula of integrating factor, ${{e}^{\int{P\left( y \right)dy}}}$
By using the above formula, we find the integrating factor. Then we get,
$\begin{align}
& {{e}^{\int{P\left( y \right)dy}}} \\
& ={{e}^{\int{\dfrac{1}{{{y}^{2}}}dy}}} \\
& ={{e}^{\dfrac{-1}{y}}} \\
\end{align}$
So, the integrating factor is ${{e}^{\dfrac{-1}{y}}}$.
Now, let us consider the formula for the solution of a differential equation of the form $\dfrac{dx}{dy}+x.P\left( y \right)=Q\left( y \right)$ , that is, \[x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C\]
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\int{P\left( y \right)dy}}}=\int{Q\left( y \right).{{e}^{\int{P\left( y \right)dy}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
\end{align}\]
Let us consider $t=\dfrac{-1}{y}$ .
By differentiating on both the sides gives us
$dt=\dfrac{-1}{{{y}^{2}}}dy$
So, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=\int{\dfrac{1}{{{y}^{3}}}.{{e}^{\dfrac{-1}{y}}}dy}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=\int{-t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
\end{align}\]
Now, let us consider the formula $\int{f\left( x \right)g\left( x \right)dx=}f\left( x \right)\int{g\left( x \right)dx}-\int{{f}'\left( x \right)\left( \int{g\left( x \right)dx} \right)}dx$.
While applying this formula we need to select the functions $f\left( x \right)$ using a rule called as ILATE rule, that is we need to select the function $f\left( x \right)$in the order Inverse, Logarithm, Algebraic, Trigonometric and Exponential and $g\left( x \right)$ will be the other one.
We have two terms in our integral $t$ and ${{e}^{t}}$, let us the ILATE rule for choosing which of them is $f$ and which is $g$. We can see that algebraic function occurs before exponential function. So, we select $f\left( x \right)$ and $g\left( x \right)$ as $f\left( t \right)=t$ and $g\left( t \right)={{e}^{t}}$.
By using the above formula, we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}=-\int{t.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-\left[ t\int{{{e}^{t}}dt}-\int{\left( \dfrac{d}{dt}t \right)\left( \int{{{e}^{t}}dt} \right)dt} \right]+C \\
& x.{{e}^{\dfrac{-1}{y}}}=-t{{e}^{t}}+\int{1.{{e}^{t}}dt}+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
\end{align}\]
Now let us convert $t$ into $\dfrac{-1}{y}$. Then we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{t}}\left( 1-t \right)+C \\
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
\end{align}\]
Now, let us substitute $x=1$ and $y=1$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+C \\
& 1.{{e}^{-1}}=2{{e}^{-1}}+C \\
& C=2{{e}^{-1}}-{{e}^{-1}} \\
& C={{e}^{-1}} \\
& C=\dfrac{1}{e} \\
\end{align}\]
So, we get the equation as \[x.{{e}^{\dfrac{-1}{y}}}={{e}^{\dfrac{-1}{y}}}\left( 1+\dfrac{1}{y} \right)+\dfrac{1}{e}\]
Now, let us substitute $y=2$ in the equation (1), we get,
\[\begin{align}
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( 1+\dfrac{1}{2} \right)+\dfrac{1}{e} \\
& x.{{e}^{\dfrac{-1}{2}}}={{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+\dfrac{1}{e} \\
& x=\dfrac{{{e}^{\dfrac{-1}{2}}}\left( \dfrac{3}{2} \right)+{{e}^{-1}}}{{{e}^{\dfrac{-1}{2}}}} \\
& x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}} \\
\end{align}\]
Hence, the answer is \[x=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}\]
Note: The possibilities for making mistakes in this type of problems are, one may make a mistake by considering the formula of integral of product of two functions $f\left( x \right)$ and $g\left( x \right)$ as $\int{f\left( x \right)g\left( x \right)dx=}\left( \int{f\left( x \right)dx} \right)\left( \int{g\left( x \right)dx} \right)$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

