Compute the larger area bounded by \[y=4+3x-{{x}^{2}}\]and the coordinate axes.
Answer
384k+ views
Hint: Try to find where the curve cuts the $x$ axis. First try to make a rough sketch. Then find the area under the curve using integral.
Note that a quadratic function always represents a parabola.
So, first of all let’s try plotting the curve considering various values,
Note that at \[x=0,y=4\]
And at \[y=0,\left( x-4 \right)\left( x+1 \right)=0\] or \[x=4,-1\]
Use the above observations to plot the graph.
The shaded region is the required area.
Hence, we can now find the area by integrating the function from $x=0$ to $x=4$.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area}=\int\limits_{0}^{4}{\left( 4+3x-{{x}^{2}} \right)dx}\]
Now we know the integration of sum of functions is sum of individual integration of the functions, i.e.,
\[\text{Area}=\int\limits_{0}^{4}{4dx}+\int\limits_{0}^{4}{\left( 3x \right)dx}-\int\limits_{0}^{4}{\left( {{x}^{2}} \right)dx}\]
On integrating, we get
\[Area=\left[ 4x \right]_{0}^{4}+3\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{4}-\left[ \dfrac{{{x}^{3}}}{3} \right]_{0}^{4}\]
Applying the limits, we get
\[Area=\left[ 4(4)-4(0) \right]+3\left[ \dfrac{{{4}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]-\left[ \dfrac{{{4}^{3}}}{3}-\dfrac{{{0}^{2}}}{3} \right]\]
On solving, we get
\[Area=16+24-\dfrac{64}{3}\]
Taking the LCM, we get
\[Area=\dfrac{40\times 3-64}{3}\]
\[Area=\dfrac{40\times 3-64}{3}=\dfrac{120-64}{3}\]
\[Area=\dfrac{56}{3}\]sq. units
Therefore the area under the curve is \[\dfrac{56}{3}\] sq. units.
Note: The possibility of mistake is that students might take the lower limit as \[-1\] considering the curve and forget to note that it is asked to find the area of the curve with the coordinate axes, so the lower limit will be \[0\].
Note that a quadratic function always represents a parabola.
So, first of all let’s try plotting the curve considering various values,
Note that at \[x=0,y=4\]
And at \[y=0,\left( x-4 \right)\left( x+1 \right)=0\] or \[x=4,-1\]
Use the above observations to plot the graph.

The shaded region is the required area.
Hence, we can now find the area by integrating the function from $x=0$ to $x=4$.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area}=\int\limits_{0}^{4}{\left( 4+3x-{{x}^{2}} \right)dx}\]
Now we know the integration of sum of functions is sum of individual integration of the functions, i.e.,
\[\text{Area}=\int\limits_{0}^{4}{4dx}+\int\limits_{0}^{4}{\left( 3x \right)dx}-\int\limits_{0}^{4}{\left( {{x}^{2}} \right)dx}\]
On integrating, we get
\[Area=\left[ 4x \right]_{0}^{4}+3\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{4}-\left[ \dfrac{{{x}^{3}}}{3} \right]_{0}^{4}\]
Applying the limits, we get
\[Area=\left[ 4(4)-4(0) \right]+3\left[ \dfrac{{{4}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]-\left[ \dfrac{{{4}^{3}}}{3}-\dfrac{{{0}^{2}}}{3} \right]\]
On solving, we get
\[Area=16+24-\dfrac{64}{3}\]
Taking the LCM, we get
\[Area=\dfrac{40\times 3-64}{3}\]
\[Area=\dfrac{40\times 3-64}{3}=\dfrac{120-64}{3}\]
\[Area=\dfrac{56}{3}\]sq. units
Therefore the area under the curve is \[\dfrac{56}{3}\] sq. units.
Note: The possibility of mistake is that students might take the lower limit as \[-1\] considering the curve and forget to note that it is asked to find the area of the curve with the coordinate axes, so the lower limit will be \[0\].
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
