
Compare the following numbers \[4 \times {10^{14}};3 \times {10^{17}}\]
Answer
487.5k+ views
Hint:
We will compare the 2 numbers by expressing them in the same power of 10. We will use the formulas of exponents to express them as powers of 10. We can also divide the 2 numbers and check whether the result is less than 1, 1 or greater than 1.
Formulas used:
1) We know that any number say \[a\]to the power of \[b\] is the product of the number with itself \[b\] times:
\[{a^b} = \underbrace {a \times a \times a \times ... \times a}_{b{\rm{ times}}}\]
2) When we multiply 2 or more exponential numbers with the same base, their powers get added:
\[{a^p} \times {a^q} = {a^{p + q}}\]
3) When 2 exponential numbers with the same base are divided, their powers get subtracted:
\[\dfrac{{{a^p}}}{{{a^q}}} = {a^{p - q}}\]
4) The formula for a negative exponential power:
\[{a^{ - p}} = \dfrac{1}{{{a^p}}}\]
Complete step by step solution:
The first number we have is \[4 \times {10^{14}}\] and the second number is \[3 \times {10^{17}}\].
We will multiply and divide \[3 \times {10^{17}}\]by 1000:
\[\begin{array}{l} \Rightarrow 3 \times {10^{17}} = 3 \times {10^{17}} \times \dfrac{{1000}}{{1000}}\\ \Rightarrow 3 \times {10^{17}} = \dfrac{{3 \times {{10}^{17}} \times 1000}}{{10 \times 10 \times 10}}\end{array}\]
Substituting \[{10^3}\] for \[10 \times 10 \times 10\] in the denominator, we get
\[ \Rightarrow 3 \times {10^{17}} = \dfrac{{3 \times 1000 \times {{10}^{17}}}}{{{{10}^3}}}\]
Substituting 10 for \[a\], 17 for \[p\] and 3 for \[q\] in the formula \[\dfrac{{{a^p}}}{{{a^q}}} = {a^{p - q}}\]:
\[ \Rightarrow 3 \times {10^{17}} = 3000 \times {10^{17 - 3}}\]
\[ \Rightarrow 3 \times {10^{17}} = 3000 \times {10^{14}}\]
We know that
\[ \Rightarrow 3000 > 4\]
We will multiply both sides by \[{10^{14}}\] :
\[ \Rightarrow 3000 \times {10^{14}} > 4 \times {10^{14}}\]
We will substitute 10 for \[a\], 14 for \[p\] and 3 for \[q\] in the formula for multiplication of 2 exponential numbers with the same base on the left-hand side:
\[ \Rightarrow {\rm{ }}3 \times {10^{17}} > 4 \times {10^{14}}\]
$\therefore $ \[{\rm{ }}3 \times {10^{17}}\]is greater than \[4 \times {10^{14}}\].
Note:
We can also compare the numbers by dividing them. If the quotient is greater than 1, the numerator is greater than the denominator. If the quotient is equal to 1, the numerator and denominator are equal and if the quotient is less than 1, then the numerator is smaller than the denominator.
We will divide the 2 numbers:
\[\dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}}\]
Substituting 10 for \[a\], 14 for \[p\] and 17 for \[q\] in the formula \[\dfrac{{{a^p}}}{{{a^q}}} = {a^{p - q}}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{{4 \times {{10}^{14 - 17}}}}{3}\\ \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{4}{3} \times {10^{ - 3}}\end{array}\]
Substituting 10 for \[a\]and 3 for \[p\] in the formula \[{a^{ - p}} = \dfrac{1}{{{a^p}}}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{4}{3} \times \dfrac{1}{{{{10}^3}}}\\ \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{{1.333}}{{{{10}^3}}}\\ \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = 0.001333\end{array}\]
We can see that \[0.001333 < 1\].
$\therefore $ \[4 \times {10^{14}}\] is less than \[3 \times {10^{17}}\].
We will compare the 2 numbers by expressing them in the same power of 10. We will use the formulas of exponents to express them as powers of 10. We can also divide the 2 numbers and check whether the result is less than 1, 1 or greater than 1.
Formulas used:
1) We know that any number say \[a\]to the power of \[b\] is the product of the number with itself \[b\] times:
\[{a^b} = \underbrace {a \times a \times a \times ... \times a}_{b{\rm{ times}}}\]
2) When we multiply 2 or more exponential numbers with the same base, their powers get added:
\[{a^p} \times {a^q} = {a^{p + q}}\]
3) When 2 exponential numbers with the same base are divided, their powers get subtracted:
\[\dfrac{{{a^p}}}{{{a^q}}} = {a^{p - q}}\]
4) The formula for a negative exponential power:
\[{a^{ - p}} = \dfrac{1}{{{a^p}}}\]
Complete step by step solution:
The first number we have is \[4 \times {10^{14}}\] and the second number is \[3 \times {10^{17}}\].
We will multiply and divide \[3 \times {10^{17}}\]by 1000:
\[\begin{array}{l} \Rightarrow 3 \times {10^{17}} = 3 \times {10^{17}} \times \dfrac{{1000}}{{1000}}\\ \Rightarrow 3 \times {10^{17}} = \dfrac{{3 \times {{10}^{17}} \times 1000}}{{10 \times 10 \times 10}}\end{array}\]
Substituting \[{10^3}\] for \[10 \times 10 \times 10\] in the denominator, we get
\[ \Rightarrow 3 \times {10^{17}} = \dfrac{{3 \times 1000 \times {{10}^{17}}}}{{{{10}^3}}}\]
Substituting 10 for \[a\], 17 for \[p\] and 3 for \[q\] in the formula \[\dfrac{{{a^p}}}{{{a^q}}} = {a^{p - q}}\]:
\[ \Rightarrow 3 \times {10^{17}} = 3000 \times {10^{17 - 3}}\]
\[ \Rightarrow 3 \times {10^{17}} = 3000 \times {10^{14}}\]
We know that
\[ \Rightarrow 3000 > 4\]
We will multiply both sides by \[{10^{14}}\] :
\[ \Rightarrow 3000 \times {10^{14}} > 4 \times {10^{14}}\]
We will substitute 10 for \[a\], 14 for \[p\] and 3 for \[q\] in the formula for multiplication of 2 exponential numbers with the same base on the left-hand side:
\[ \Rightarrow {\rm{ }}3 \times {10^{17}} > 4 \times {10^{14}}\]
$\therefore $ \[{\rm{ }}3 \times {10^{17}}\]is greater than \[4 \times {10^{14}}\].
Note:
We can also compare the numbers by dividing them. If the quotient is greater than 1, the numerator is greater than the denominator. If the quotient is equal to 1, the numerator and denominator are equal and if the quotient is less than 1, then the numerator is smaller than the denominator.
We will divide the 2 numbers:
\[\dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}}\]
Substituting 10 for \[a\], 14 for \[p\] and 17 for \[q\] in the formula \[\dfrac{{{a^p}}}{{{a^q}}} = {a^{p - q}}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{{4 \times {{10}^{14 - 17}}}}{3}\\ \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{4}{3} \times {10^{ - 3}}\end{array}\]
Substituting 10 for \[a\]and 3 for \[p\] in the formula \[{a^{ - p}} = \dfrac{1}{{{a^p}}}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{4}{3} \times \dfrac{1}{{{{10}^3}}}\\ \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = \dfrac{{1.333}}{{{{10}^3}}}\\ \Rightarrow \dfrac{{4 \times {{10}^{14}}}}{{3 \times {{10}^{17}}}} = 0.001333\end{array}\]
We can see that \[0.001333 < 1\].
$\therefore $ \[4 \times {10^{14}}\] is less than \[3 \times {10^{17}}\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
List some examples of Rabi and Kharif crops class 8 biology CBSE

Write five sentences about Earth class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Advantages and disadvantages of science

In a school there are two sections of class X section class 8 maths CBSE

Explain land use pattern in India and why has the land class 8 social science CBSE
