Answer
Verified
447.3k+ views
Hint:According to the question we have to find the value of the following equation $\sin {47^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } - \sin {25^ \circ }$. To determine the value of the equation we use the formula $\sin c - \sin d = 2\cos \dfrac{{c + d}}{2} . \sin \dfrac{{c - d}}{2}$. Then put values in place of c and d we get the equation $(\sin {47^ \circ } - \sin {25^ \circ }) + (\sin {61^ \circ } - \sin {11^ \circ }) = 2\cos \dfrac{{47 + 25}}{2} . \sin \dfrac{{47 - 25}}{2} + 2\cos \dfrac{{61 + 11}}{2} . \sin \dfrac{{61 - 11}}{2}$.By solving this we get the value of the equation.
Complete step-by-step answer:
In the question we will find the value of $\sin {47^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } - \sin {25^ \circ }$
First we arrange the equation in the following form $\sin {47^ \circ } - \sin {25^ \circ } + \sin {61^ \circ } - \sin {11^ \circ }$
For finding the value we use the formula
$ \to \sin c - \sin d = 2\cos \dfrac{{c + d}}{2} . \sin \dfrac{{c - d}}{2}$
$ \Rightarrow \sin 47 - \sin 25 = 2\cos \dfrac{{47 + 25}}{2} . \sin \dfrac{{47 - 25}}{2} - - - - - (1)$
$ \Rightarrow \sin 61 - \sin 11 = 2\cos \dfrac{{61 + 11}}{2} . \sin \dfrac{{61 - 11}}{2} - - - - - (2)$
Now, putting the value of (1) & (2) in the equation, we get,
$(\sin {47^ \circ } - \sin {25^ \circ }) + (\sin {61^ \circ } - \sin {11^ \circ }) = 2\cos \dfrac{{47 + 25}}{2} . \sin \dfrac{{47 - 25}}{2} + 2\cos \dfrac{{61 + 11}}{2} . \sin \dfrac{{61 - 11}}{2}$
$ = 2\cos \dfrac{{72}}{2} . \sin \dfrac{{22}}{2} + 2\cos \dfrac{{72}}{2} . \sin \dfrac{{50}}{2}$
$ = 2\cos 36 . \sin 11 + 2\cos 36 . \sin 25$
Taking $2\cos 36$ common, we get
$ = 2\cos 36(\sin 11 + \sin 25)$
$ = 2\cos 36(\sin 25 + \sin 11)$
Now, we use the formula $\sin c + \sin d = 2\sin \dfrac{{c + d}}{2} . \cos \dfrac{{c - d}}{2}$, we get
$ = 2\cos 36(2\sin \dfrac{{25 + 11}}{2} . \cos \dfrac{{25 - 11}}{2})$
$ = 4\cos 36 . \sin 18 . \cos 7$
Here, the value of \[\cos 36 = \dfrac{{\sqrt 5 + 1}}{4}\] and \[\sin 18 = \dfrac{{\sqrt 5 - 1}}{4}\]
Put the values in the equation we get,
$ = 4\dfrac{{\sqrt 5 + 1}}{4} . \dfrac{{\sqrt 5 - 1}}{4} . \cos 7$
We know that $(a+b) (a-b)=a^2-b^2$
So,
$ = 4 . \dfrac{{({\sqrt5})^2 - 1^2}}{{4 \times 4}} . \cos 7$
$ = 4 . \dfrac{{5 - 1}}{{4 \times 4}} . \cos 7$
$ = \cos {7^ \circ }$
$\therefore $ The value of $\sin {47^ \circ } - \sin {25^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } = \cos {7^ \circ }$
So, the correct answer is “Option A”.
Additional Information:
1) Sine and cosine are the functions enlightening the shape of a right angled triangle.
2) Sine angle is the ratio of the side opposite to the vertex from which we are observing to the hypotenuse.
3) Cosine angle is the ratio of the adjacent side of the vertex from where we are observing to the hypotenuse.
3) Size of the triangle does not affect the values of sine angle and cosine angle for the given value of the angle.
Note:Students should remember the trigonometric sum and difference formulas i.e $\sin c - \sin d = 2\cos \dfrac{{c + d}}{2} . \sin \dfrac{{c - d}}{2}$ and $\sin c + \sin d = 2\sin \dfrac{{c + d}}{2} . \cos \dfrac{{c - d}}{2}$ and also some trigonometric standard angles \[\cos 36 = \dfrac{{\sqrt 5 + 1}}{4}\] and \[\sin 18 = \dfrac{{\sqrt 5 - 1}}{4}\] for solving these types of problems.
Complete step-by-step answer:
In the question we will find the value of $\sin {47^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } - \sin {25^ \circ }$
First we arrange the equation in the following form $\sin {47^ \circ } - \sin {25^ \circ } + \sin {61^ \circ } - \sin {11^ \circ }$
For finding the value we use the formula
$ \to \sin c - \sin d = 2\cos \dfrac{{c + d}}{2} . \sin \dfrac{{c - d}}{2}$
$ \Rightarrow \sin 47 - \sin 25 = 2\cos \dfrac{{47 + 25}}{2} . \sin \dfrac{{47 - 25}}{2} - - - - - (1)$
$ \Rightarrow \sin 61 - \sin 11 = 2\cos \dfrac{{61 + 11}}{2} . \sin \dfrac{{61 - 11}}{2} - - - - - (2)$
Now, putting the value of (1) & (2) in the equation, we get,
$(\sin {47^ \circ } - \sin {25^ \circ }) + (\sin {61^ \circ } - \sin {11^ \circ }) = 2\cos \dfrac{{47 + 25}}{2} . \sin \dfrac{{47 - 25}}{2} + 2\cos \dfrac{{61 + 11}}{2} . \sin \dfrac{{61 - 11}}{2}$
$ = 2\cos \dfrac{{72}}{2} . \sin \dfrac{{22}}{2} + 2\cos \dfrac{{72}}{2} . \sin \dfrac{{50}}{2}$
$ = 2\cos 36 . \sin 11 + 2\cos 36 . \sin 25$
Taking $2\cos 36$ common, we get
$ = 2\cos 36(\sin 11 + \sin 25)$
$ = 2\cos 36(\sin 25 + \sin 11)$
Now, we use the formula $\sin c + \sin d = 2\sin \dfrac{{c + d}}{2} . \cos \dfrac{{c - d}}{2}$, we get
$ = 2\cos 36(2\sin \dfrac{{25 + 11}}{2} . \cos \dfrac{{25 - 11}}{2})$
$ = 4\cos 36 . \sin 18 . \cos 7$
Here, the value of \[\cos 36 = \dfrac{{\sqrt 5 + 1}}{4}\] and \[\sin 18 = \dfrac{{\sqrt 5 - 1}}{4}\]
Put the values in the equation we get,
$ = 4\dfrac{{\sqrt 5 + 1}}{4} . \dfrac{{\sqrt 5 - 1}}{4} . \cos 7$
We know that $(a+b) (a-b)=a^2-b^2$
So,
$ = 4 . \dfrac{{({\sqrt5})^2 - 1^2}}{{4 \times 4}} . \cos 7$
$ = 4 . \dfrac{{5 - 1}}{{4 \times 4}} . \cos 7$
$ = \cos {7^ \circ }$
$\therefore $ The value of $\sin {47^ \circ } - \sin {25^ \circ } + \sin {61^ \circ } - \sin {11^ \circ } = \cos {7^ \circ }$
So, the correct answer is “Option A”.
Additional Information:
1) Sine and cosine are the functions enlightening the shape of a right angled triangle.
2) Sine angle is the ratio of the side opposite to the vertex from which we are observing to the hypotenuse.
3) Cosine angle is the ratio of the adjacent side of the vertex from where we are observing to the hypotenuse.
3) Size of the triangle does not affect the values of sine angle and cosine angle for the given value of the angle.
Note:Students should remember the trigonometric sum and difference formulas i.e $\sin c - \sin d = 2\cos \dfrac{{c + d}}{2} . \sin \dfrac{{c - d}}{2}$ and $\sin c + \sin d = 2\sin \dfrac{{c + d}}{2} . \cos \dfrac{{c - d}}{2}$ and also some trigonometric standard angles \[\cos 36 = \dfrac{{\sqrt 5 + 1}}{4}\] and \[\sin 18 = \dfrac{{\sqrt 5 - 1}}{4}\] for solving these types of problems.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE