
Check whether m=3 is a root of the quadratic equation:
${{m}^{2}}+4m+3=0$.
Answer
618.9k+ views
Hint: Here, we may put the value of m = 2 in the given quadratic equation and check whether the value of the quadratic equation is 0 or not. If it becomes 0 then, 2 will be a root of the given quadratic equation.
Complete step-by-step answer:
The given quadratic equation is:
${{m}^{2}}+4m+3=0.........(1)$
Since, we know that the meaning of the root of an equation is that at that particular value, the value of the function becomes zero.
Let us consider a quadratic equation $a{{x}^{2}}+bx+c=0$, where a, b and c are real numbers.
Now, if a real number ‘p’ is a root of this quadratic equation then the value of this equation at p will be zero. Or we can say that:
$a{{p}^{2}}+bp+c=0$ that is when we substitute p in place of x in this equation the value of the equation becomes zero.
So, for the quadratic equation given in the question to check whether m=2 is a root of this equation or not, we may substitute 2 in place of m in equation (1). So, on substituting the value we get:
$\begin{align}
& {{\left( 2 \right)}^{2}}+4\times 2+3 \\
& =4+8+3 \\
& =15 \\
\end{align}$
So, we get 15 on substituting m=2 in the given quadratic equation which is not equal to zero.
Hence, m=2 is not a root of the given quadratic equation ${{m}^{2}}+4m+3=0$.
Note: Students should note here that the geometrical meaning of the root of an equation is that the graph of the function of that equation cuts the x-axis at this point. So, such questions can also be solved by plotting a graph of the given equation and then checking whether it cuts the x-axis at x=2 or not.
Complete step-by-step answer:
The given quadratic equation is:
${{m}^{2}}+4m+3=0.........(1)$
Since, we know that the meaning of the root of an equation is that at that particular value, the value of the function becomes zero.
Let us consider a quadratic equation $a{{x}^{2}}+bx+c=0$, where a, b and c are real numbers.
Now, if a real number ‘p’ is a root of this quadratic equation then the value of this equation at p will be zero. Or we can say that:
$a{{p}^{2}}+bp+c=0$ that is when we substitute p in place of x in this equation the value of the equation becomes zero.
So, for the quadratic equation given in the question to check whether m=2 is a root of this equation or not, we may substitute 2 in place of m in equation (1). So, on substituting the value we get:
$\begin{align}
& {{\left( 2 \right)}^{2}}+4\times 2+3 \\
& =4+8+3 \\
& =15 \\
\end{align}$
So, we get 15 on substituting m=2 in the given quadratic equation which is not equal to zero.
Hence, m=2 is not a root of the given quadratic equation ${{m}^{2}}+4m+3=0$.
Note: Students should note here that the geometrical meaning of the root of an equation is that the graph of the function of that equation cuts the x-axis at this point. So, such questions can also be solved by plotting a graph of the given equation and then checking whether it cuts the x-axis at x=2 or not.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

