
Check whether 7+3x is a factor of \[3{{x}^{3}}+7x\].
Answer
610.5k+ views
Hint: Relate factor of any polynomial with its zeroes(If x = a is zero of polynomial then x-a will be a factor of that polynomial).
Let us first find out the relationship between the zero and factor of any polynomial.
Let us assume we have a polynomial
\[F\left( x \right)={{a}_{o}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+.....{{a}_{n}}\]
Let us assume \[\left( x+\alpha \right)\] is a factor of the above polynomial i.e. if we divide the given polynomial by \[\left( x+\alpha \right)\] then remainder will be zero.
As we know the division algorithm that Dividend \[=\]Divisor \[\times \]Quotient \[+\]Remainder
\[F\left( x \right)=\left( x+\alpha \right)Q\left( x \right)+0\] [\[Q\left( x \right)\]\[=\] Quotient]
Hence, \[F\left( x \right)=\left( x+\alpha \right)\left( Q\left( x \right) \right)....\left( i \right)\]
Let us find out the zeros / roots of a given polynomial \[F\left( x \right)\]and \[\left( x+\alpha \right)\].
Since, zero is the value of the variable term at which polynomial / expression will become zero.
Zero of \[\left( x+\alpha \right)\]\[\Rightarrow x+\alpha =0\]
\[x=-\alpha ....\left( ii \right)\]
Let us find out zero of\[F\left( x \right)\].
\[F\left( x \right)=0\]
\[{{a}_{o}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+....{{a}_{n}}=0\]
As we can write \[F\left( x \right)=\left( x+\alpha \right)Q\left( x \right)\]
Hence, \[F\left( x \right)=0\]
Or, \[\left( x+\alpha \right)Q\left( x \right)=0\]
Since, \[F\left( x \right)\] is a degree of \[n\] then \[F\left( x \right)\]have \[n\] roots and \[Q\left( x \right)\] will become degree of \[\left( n-1 \right)\]as divided by \[\left( x+\alpha \right)\].
Hence, \[\left( x+\alpha \right)\left( Q\left( x \right) \right)=0\]
\[x+\alpha =0\] or \[Q\left( x \right)=0\]
\[x=-\alpha \]and \[Q\left( x \right)=0\] which have \[\left( n-1 \right)\] roots.
Therefore, \[F\left( x \right)\] has one root \[\left( -\alpha \right)\] and \[\left( n-1 \right)\] roots which can be obtained from \[Q\left( x \right)=0\].
Now, it is proved that if a polynomial is a factor of another, then the roots or zeros of them is also common.
Now, coming to the question part. We need to check whether \[\left( 7+3x \right)\] is a factor of \[3{{x}^{2}}+7x\] or not.
Let us find out the root / zero of \[\left( 7+3x \right)\].
\[7+3x=0\]
\[3x=-7\]
\[x=\dfrac{-7}{3}\]
Root / Zero of \[7+3x\] is \[\left( \dfrac{-7}{3} \right)\].
Now, if \[\left( 7+3x \right)\] is a factor of given polynomial, then root of \[7+3x\] i.e. \[\left( \dfrac{-7}{3} \right)\] is also zero / root of the polynomial.
Hence, we have root \[=\dfrac{-7}{3}\]
Polynomial \[=F\left( x \right)=3{{x}^{3}}+7x\]
\[=-3\times \dfrac{49\times 7}{27}-\dfrac{49}{3}\]
\[F\left( \dfrac{-7}{3} \right)=\dfrac{-49}{9}(7+3)\ne 0\]
As \[\dfrac{-7}{3}\] is not a root of a given polynomial as it is not satisfying the given polynomial.
Hence, \[7+3x\] is not a factor of \[3{{x}^{3}}+7x\].
Note: One can check by dividing the given polynomial \[3{{x}^{3}}+7x\] by \[7+3x\] and relate it with the remainder. If the remainder will be zero, then \[7+3x\] is a factor otherwise not. (Remainder will not be zero). We can prove it by factoring \[3{{x}^{3}}+7x\] as well in the following way:
\[3{{x}^{3}}+7x\]
\[x\left( 3{{x}^{2}}+7 \right)\]
Now, further we cannot factorize the expression. And hence \[\left( 7+3x \right)\] is not a factor of \[3{{x}^{3}}+7x\] by observing the factors of \[3{{x}^{3}}+7x\].
Let us first find out the relationship between the zero and factor of any polynomial.
Let us assume we have a polynomial
\[F\left( x \right)={{a}_{o}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+.....{{a}_{n}}\]
Let us assume \[\left( x+\alpha \right)\] is a factor of the above polynomial i.e. if we divide the given polynomial by \[\left( x+\alpha \right)\] then remainder will be zero.
As we know the division algorithm that Dividend \[=\]Divisor \[\times \]Quotient \[+\]Remainder
\[F\left( x \right)=\left( x+\alpha \right)Q\left( x \right)+0\] [\[Q\left( x \right)\]\[=\] Quotient]
Hence, \[F\left( x \right)=\left( x+\alpha \right)\left( Q\left( x \right) \right)....\left( i \right)\]
Let us find out the zeros / roots of a given polynomial \[F\left( x \right)\]and \[\left( x+\alpha \right)\].
Since, zero is the value of the variable term at which polynomial / expression will become zero.
Zero of \[\left( x+\alpha \right)\]\[\Rightarrow x+\alpha =0\]
\[x=-\alpha ....\left( ii \right)\]
Let us find out zero of\[F\left( x \right)\].
\[F\left( x \right)=0\]
\[{{a}_{o}}{{x}^{n}}+{{a}_{1}}{{x}^{n-1}}+{{a}_{2}}{{x}^{n-2}}+....{{a}_{n}}=0\]
As we can write \[F\left( x \right)=\left( x+\alpha \right)Q\left( x \right)\]
Hence, \[F\left( x \right)=0\]
Or, \[\left( x+\alpha \right)Q\left( x \right)=0\]
Since, \[F\left( x \right)\] is a degree of \[n\] then \[F\left( x \right)\]have \[n\] roots and \[Q\left( x \right)\] will become degree of \[\left( n-1 \right)\]as divided by \[\left( x+\alpha \right)\].
Hence, \[\left( x+\alpha \right)\left( Q\left( x \right) \right)=0\]
\[x+\alpha =0\] or \[Q\left( x \right)=0\]
\[x=-\alpha \]and \[Q\left( x \right)=0\] which have \[\left( n-1 \right)\] roots.
Therefore, \[F\left( x \right)\] has one root \[\left( -\alpha \right)\] and \[\left( n-1 \right)\] roots which can be obtained from \[Q\left( x \right)=0\].
Now, it is proved that if a polynomial is a factor of another, then the roots or zeros of them is also common.
Now, coming to the question part. We need to check whether \[\left( 7+3x \right)\] is a factor of \[3{{x}^{2}}+7x\] or not.
Let us find out the root / zero of \[\left( 7+3x \right)\].
\[7+3x=0\]
\[3x=-7\]
\[x=\dfrac{-7}{3}\]
Root / Zero of \[7+3x\] is \[\left( \dfrac{-7}{3} \right)\].
Now, if \[\left( 7+3x \right)\] is a factor of given polynomial, then root of \[7+3x\] i.e. \[\left( \dfrac{-7}{3} \right)\] is also zero / root of the polynomial.
Hence, we have root \[=\dfrac{-7}{3}\]
Polynomial \[=F\left( x \right)=3{{x}^{3}}+7x\]
\[=-3\times \dfrac{49\times 7}{27}-\dfrac{49}{3}\]
\[F\left( \dfrac{-7}{3} \right)=\dfrac{-49}{9}(7+3)\ne 0\]
As \[\dfrac{-7}{3}\] is not a root of a given polynomial as it is not satisfying the given polynomial.
Hence, \[7+3x\] is not a factor of \[3{{x}^{3}}+7x\].
Note: One can check by dividing the given polynomial \[3{{x}^{3}}+7x\] by \[7+3x\] and relate it with the remainder. If the remainder will be zero, then \[7+3x\] is a factor otherwise not. (Remainder will not be zero). We can prove it by factoring \[3{{x}^{3}}+7x\] as well in the following way:
\[3{{x}^{3}}+7x\]
\[x\left( 3{{x}^{2}}+7 \right)\]
Now, further we cannot factorize the expression. And hence \[\left( 7+3x \right)\] is not a factor of \[3{{x}^{3}}+7x\] by observing the factors of \[3{{x}^{3}}+7x\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

