Check whether -150 is a term of the AP: 11,8,5,2,……
Answer
Verified
506.4k+ views
Hint: If -150 lies in the series then we will have a integer value for n when we substitute -150 in place of ${{a}_{n}}$ in the formula ${{a}_{n}}=a+(n-1)d$ where a is the first term of the series and d is the common difference of the series of the A.P.
Complete step-by-step answer:
An A.P. is a series of the form a, a+d , a+2d , …………… and so on. Therefore the terms are increasing or decreasing by a single value that is d.
This sequence is an A.P. as we can see the terms are decreasing by 3 when we go from left to right in the series.
Now to find out if -150 is a term of the series or not we will need to first find out the first term and common difference of the series.
In the sequence we can see that the first term is 11 i.e. a=11.
And to find the common difference we need to subtract the subsequent terms since, $d={{a}_{n}}-{{a}_{n-1}}$
When we take n=2, we have
$\begin{align}
& d={{a}_{2}}-{{a}_{1}} \\
& =8-11 \\
& =-3 \\
\end{align}$
Therefore, d=-3
The nth term of the series is given by ${{a}_{n}}=a+(n-1)d$
Now we will substitute ${{a}_{n}}$ by -150, a by 11 and d by -3 in the formula.
$\begin{align}
& {{a}_{n}}=a+(n-1)d \\
& \Rightarrow -150=11+(n-1)(-3) \\
& \Rightarrow -150=11-3(n-1) \\
\end{align}$
Taking -150 to RHS and 3(n-1) to LHS we have,
$\begin{align}
& \Rightarrow 3(n-1)=150+11 \\
& \Rightarrow 3(n-1)=161 \\
\end{align}$
Dividing 3 both sides we have,
$\Rightarrow n-1=\dfrac{161}{3}$
Adding 1 both sides we have,
$\begin{align}
& \Rightarrow n=\dfrac{161}{3}+1 \\
& \Rightarrow n=\dfrac{164}{3} \\
\end{align}$
Now if 164 is divisible by 3 then n will be an integer.
To check if the given number is an integer we have a divisibility rule of 3 which says that if the sum of digits of the number is divisible by 3 then the number is divisible by 3.
For 164 we have,
1+6+4=11
Since, 11 is not divisible by 3 then the given number is not divisible by 3. Therefore, n is not an integer. And since n is not an integer we can say that -150 is not a term of the series.
Hence, -150 is not a term of the given A.P.
Note: One can get confused when they see d=-3 and the term which is being asked in the question is -150. By appearance without checking they may answer that the given term lies in the series just because -150 is divisible by -3.
Complete step-by-step answer:
An A.P. is a series of the form a, a+d , a+2d , …………… and so on. Therefore the terms are increasing or decreasing by a single value that is d.
This sequence is an A.P. as we can see the terms are decreasing by 3 when we go from left to right in the series.
Now to find out if -150 is a term of the series or not we will need to first find out the first term and common difference of the series.
In the sequence we can see that the first term is 11 i.e. a=11.
And to find the common difference we need to subtract the subsequent terms since, $d={{a}_{n}}-{{a}_{n-1}}$
When we take n=2, we have
$\begin{align}
& d={{a}_{2}}-{{a}_{1}} \\
& =8-11 \\
& =-3 \\
\end{align}$
Therefore, d=-3
The nth term of the series is given by ${{a}_{n}}=a+(n-1)d$
Now we will substitute ${{a}_{n}}$ by -150, a by 11 and d by -3 in the formula.
$\begin{align}
& {{a}_{n}}=a+(n-1)d \\
& \Rightarrow -150=11+(n-1)(-3) \\
& \Rightarrow -150=11-3(n-1) \\
\end{align}$
Taking -150 to RHS and 3(n-1) to LHS we have,
$\begin{align}
& \Rightarrow 3(n-1)=150+11 \\
& \Rightarrow 3(n-1)=161 \\
\end{align}$
Dividing 3 both sides we have,
$\Rightarrow n-1=\dfrac{161}{3}$
Adding 1 both sides we have,
$\begin{align}
& \Rightarrow n=\dfrac{161}{3}+1 \\
& \Rightarrow n=\dfrac{164}{3} \\
\end{align}$
Now if 164 is divisible by 3 then n will be an integer.
To check if the given number is an integer we have a divisibility rule of 3 which says that if the sum of digits of the number is divisible by 3 then the number is divisible by 3.
For 164 we have,
1+6+4=11
Since, 11 is not divisible by 3 then the given number is not divisible by 3. Therefore, n is not an integer. And since n is not an integer we can say that -150 is not a term of the series.
Hence, -150 is not a term of the given A.P.
Note: One can get confused when they see d=-3 and the term which is being asked in the question is -150. By appearance without checking they may answer that the given term lies in the series just because -150 is divisible by -3.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE