
Charge $ { q }_{ 2 }$ of mass m revolves around a stationary charge $ { q }_{ 1 }$ in a circular orbit of radius r. The orbital periodic time of $ { q }_{ 2 }$ would be.
$A. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$B. { \left( \dfrac { k{ q }_{ 1 }{ q }_{ 2 } }{ 4{ \pi }^{ 2 }m{ r }^{ 3 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$C. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 4 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$D. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 2 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Answer
576.6k+ views
Hint: Force acting on the particle can be balanced by equating Electrostatic force and centripetal force on the charge. By equating you get the value for v. Use the relation between velocity, displacement and time. Substitute the value of calculated velocity and displacement and find time.
Formula used:
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$
Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is $2\pi r$. …(1)
Electrostatic force is given by,
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$ …(2)
Centripetal Force is given by,
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$ …(3)
For stable orbit, these forces should be equal.
$\therefore { F }_{ e }={ F }_{ c }$
By equating equation.(1) and equation.(2) we get,
$\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }$
$\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }$ …(4)
Now, we know $v= \dfrac { x }{ t }$ …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
$ { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }$
$\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
But $\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k$
$\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Therefore, the orbital periodic time of $ { q }_{ 2 }$ would be $ { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Hence, the correct answer is option A i.e. ${ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$.
Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, ${ F }_{ c }= mr{ \omega }^{ 2 }$
But, $\omega =\dfrac { 2\pi }{ T }$
where, T: Time Period
$\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }$
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.
Formula used:
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$
Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is $2\pi r$. …(1)
Electrostatic force is given by,
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$ …(2)
Centripetal Force is given by,
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$ …(3)
For stable orbit, these forces should be equal.
$\therefore { F }_{ e }={ F }_{ c }$
By equating equation.(1) and equation.(2) we get,
$\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }$
$\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }$ …(4)
Now, we know $v= \dfrac { x }{ t }$ …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
$ { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }$
$\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
But $\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k$
$\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Therefore, the orbital periodic time of $ { q }_{ 2 }$ would be $ { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Hence, the correct answer is option A i.e. ${ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$.
Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, ${ F }_{ c }= mr{ \omega }^{ 2 }$
But, $\omega =\dfrac { 2\pi }{ T }$
where, T: Time Period
$\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }$
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

