
Charge $ { q }_{ 2 }$ of mass m revolves around a stationary charge $ { q }_{ 1 }$ in a circular orbit of radius r. The orbital periodic time of $ { q }_{ 2 }$ would be.
$A. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$B. { \left( \dfrac { k{ q }_{ 1 }{ q }_{ 2 } }{ 4{ \pi }^{ 2 }m{ r }^{ 3 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$C. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 4 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$D. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 2 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Answer
590.4k+ views
Hint: Force acting on the particle can be balanced by equating Electrostatic force and centripetal force on the charge. By equating you get the value for v. Use the relation between velocity, displacement and time. Substitute the value of calculated velocity and displacement and find time.
Formula used:
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$
Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is $2\pi r$. …(1)
Electrostatic force is given by,
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$ …(2)
Centripetal Force is given by,
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$ …(3)
For stable orbit, these forces should be equal.
$\therefore { F }_{ e }={ F }_{ c }$
By equating equation.(1) and equation.(2) we get,
$\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }$
$\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }$ …(4)
Now, we know $v= \dfrac { x }{ t }$ …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
$ { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }$
$\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
But $\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k$
$\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Therefore, the orbital periodic time of $ { q }_{ 2 }$ would be $ { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Hence, the correct answer is option A i.e. ${ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$.
Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, ${ F }_{ c }= mr{ \omega }^{ 2 }$
But, $\omega =\dfrac { 2\pi }{ T }$
where, T: Time Period
$\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }$
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.
Formula used:
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$
Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is $2\pi r$. …(1)
Electrostatic force is given by,
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$ …(2)
Centripetal Force is given by,
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$ …(3)
For stable orbit, these forces should be equal.
$\therefore { F }_{ e }={ F }_{ c }$
By equating equation.(1) and equation.(2) we get,
$\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }$
$\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }$ …(4)
Now, we know $v= \dfrac { x }{ t }$ …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
$ { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }$
$\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
But $\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k$
$\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Therefore, the orbital periodic time of $ { q }_{ 2 }$ would be $ { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Hence, the correct answer is option A i.e. ${ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$.
Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, ${ F }_{ c }= mr{ \omega }^{ 2 }$
But, $\omega =\dfrac { 2\pi }{ T }$
where, T: Time Period
$\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }$
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

