
Charge $ { q }_{ 2 }$ of mass m revolves around a stationary charge $ { q }_{ 1 }$ in a circular orbit of radius r. The orbital periodic time of $ { q }_{ 2 }$ would be.
$A. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$B. { \left( \dfrac { k{ q }_{ 1 }{ q }_{ 2 } }{ 4{ \pi }^{ 2 }m{ r }^{ 3 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$C. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 4 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
$D. { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 2 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Answer
510.3k+ views
Hint: Force acting on the particle can be balanced by equating Electrostatic force and centripetal force on the charge. By equating you get the value for v. Use the relation between velocity, displacement and time. Substitute the value of calculated velocity and displacement and find time.
Formula used:
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$
Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is $2\pi r$. …(1)
Electrostatic force is given by,
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$ …(2)
Centripetal Force is given by,
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$ …(3)
For stable orbit, these forces should be equal.
$\therefore { F }_{ e }={ F }_{ c }$
By equating equation.(1) and equation.(2) we get,
$\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }$
$\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }$ …(4)
Now, we know $v= \dfrac { x }{ t }$ …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
$ { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }$
$\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
But $\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k$
$\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Therefore, the orbital periodic time of $ { q }_{ 2 }$ would be $ { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Hence, the correct answer is option A i.e. ${ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$.
Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, ${ F }_{ c }= mr{ \omega }^{ 2 }$
But, $\omega =\dfrac { 2\pi }{ T }$
where, T: Time Period
$\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }$
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.
Formula used:
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$
Complete step by step answer:
Let the charge be moving with velocity ‘v’.
The total path for revolution (x) is $2\pi r$. …(1)
Electrostatic force is given by,
${ F }_{ e }=\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } }$ …(2)
Centripetal Force is given by,
${ F }_{ c }=\dfrac { m{ v }^{ 2 } }{ r }$ …(3)
For stable orbit, these forces should be equal.
$\therefore { F }_{ e }={ F }_{ c }$
By equating equation.(1) and equation.(2) we get,
$\dfrac { 1 }{ 4\pi \epsilon _{ 0 } } \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ { r }^{ 2 } } =\dfrac { m{ v }^{ 2 } }{ r }$
$\therefore v = { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }$ …(4)
Now, we know $v= \dfrac { x }{ t }$ …(5)
By substituting equation.(1) and equation.(2) in equation.(5) we get,
$ { \left( \dfrac { { q }_{ 1 }{ q }_{ 2 } }{ 4m\pi { \epsilon }_{ 0 }r } \right) }^{ \dfrac { 1 }{ 2 } }= \dfrac { 2\pi r }{ t }$
$\therefore t= { \left( \dfrac { 16{ \pi }^{ 3 }{ \epsilon }_{ 0 }m{ r }^{ 3 } }{ { q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
But $\dfrac { 1 }{ 4\pi { \epsilon }_{ 0 } } = k$
$\therefore t= { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ { kq }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Therefore, the orbital periodic time of $ { q }_{ 2 }$ would be $ { \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$
Hence, the correct answer is option A i.e. ${ \left( \dfrac { 4{ \pi }^{ 2 }m{ r }^{ 3 } }{ k{ q }_{ 1 }{ q }_{ 2 } } \right) }^{ \dfrac { 1 }{ 2 } }$.
Note:
There is an alternate method to solve this problem. In alternate method, you can take centripetal force as, ${ F }_{ c }= mr{ \omega }^{ 2 }$
But, $\omega =\dfrac { 2\pi }{ T }$
where, T: Time Period
$\therefore { F }_{ c }= \dfrac { 4mr{ \pi }^{ 2 } }{ { T }^{ 2 } }$
Now you can equate the Electrostatic Force and Centripetal Force and calculate T.
Thus, you can calculate orbital time period using this method.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
